ORGANOMETALLIC STRUCTURES – TRANSITION METALS

ANNUAL SURVEY COVERING THE YEAR 1971

M.I. BRUCE

Department of Inorganic Chemistry, The University, Bristol, BS8 1TS (Great Britain)

Abbrevia	tions	ffars f ₄ fars f , fos	1,2-bis(dimethylarsino)perfluorocyclopentene 1,2-bis(dimethylarsino)perfluorocyclobutene 1,2-bis(diphenylphosphino)perfluorocyclobutene
aa	o-allylohenyldimethylarsine	f fos	1,2-bis(diphenylphosphino)perfluorocyclopentene
acac	acetylacetonate	HFA	hexafluoroacetone
an	2-methoxyphenyl	ind	indenyl
ap	o-allylphenyldiphenylphosphine	Меру	4-methylpyridine
azb	phenylazophenyl-2C,N'	mn	malonitrile anion
bipy	2,2'-bipyridyl	OAc	acetate
COD	1,5-cyclooctadiene	РСуз	tricyclohexylphosphine
dam	bis(diphenylarsino)methane	PPh,	triphenylphosphine
dbm	dibenzoylmethanato	ру	pyridine
diaz	1,2-diazepine	52	o-styryldimethylarsine
dmg	dimethylglyoximato	salpn	N,N-bis(salicylidenimine)-1,2-propane dianion
dmpe	1,2-bis(dimethylphosphino)ethane	sp	o-styryldiphenylphosphine
dppe	1,2-bis(diphenylphosphino)ethane	TCNE	tetracyanoethylene
DQ	duroquinone	THF	tetrahydrofuran
FA	fumaric acid	tol	tolyl
Fc	ferrocenyl	ttas	bis(o-dimethylarsinophenyl)methylarsine

Reviews. The survey of metal-metal bonds and covalent atomic radii of transition metals in π -complexes and polynuclear carbonyls¹, briefly referred to last year, proves to be a summary of the more recent structural studies of complexes with homo- and hetero-polymetallic bonds, both within the transition metal series, and also of transition elements with metals of Groups IB-IVB, together with some attempts to correlate bond lengths.

Churchill² has summarised X-ray structure determinations of metal—carbon σ -bond lengths, and comments that few generalisations can yet be made; approximately 70 structural determinations are considered. A survey of crystal structures of the platinum group metal complexes has also appeared³.

A new journal has appeared devoted to structure determinations, namely Journal of Crystal and Molecular Structure, together with a preliminary communication vehicle, Crystal Structure Determinations. Both of these publications are likely to contain structures of interest to the organometallic chemist. In addition, a listing of structures of coordination complexes appears in each issue of Coordination Chemistry Reviews. However, the coverage of organometallic complexes is far from complete.

Three volumes have appeared in the series *Molecular Structures and Dimensions*⁴. Volumes 1 and 2 comprise a bibliography of the period 1935–1969, dealing with general organic structures, and with complexes and organometallics, respectively. The third volume covers the period 1969–1971. Entries are arranged by chemical class, and cumulative indexes are given. At present the title of the series is somewhat misleading, since neither structures nor dimensions are detailed.

Simple metal carbonyl derivatives. During the year, the structures of several long-known metal carbonyl complexes have been determined, confirming the geometries deduced by other physical methods, and providing some structural parameters. Thus in $Mn(CO)_5 Cl(1)$, the Mn-Cl bond is 2.367(4) Å⁵; in the substituted complex cis-Mn(CO)₄(PPh₃)Cl(2), the

value is 2.36 Å ⁶. These values are close to estimated single bond lengths. However, the Mn-CO bond lengths *trans* to Cl (and to P) are shorter, by ~0.09 Å, than the other bonds, suggesting considerable π interaction. A preliminary result for Mn(CO)₅ Br quoted in ref. 5 gives an Mn-Br bond length of 2.50(1) Å.

Although azide reacts with Group VI carbonyls, and with cationic carbonyls, to form isocyanate complexes, with manganese and rhenium carbonyls, complexes containing azide ligands can also be obtained. The structure of the binuclear complex NEt₄ [$Mn_2(CO)_6(N_3)_3$] (3) reveals bridging azido groups, with relatively weak metal-metal bonding⁷.

The anion in N-n-Bu₄ [Rh(CO)₂ Cl₂] (4) has the expected *cis* square planar structure, with one of the CO groups and the *trans*-Cl disordered. Here again an unusually short Rh–CO distance of 1.72(2) Å is accounted for in terms of extensive π -bonding. The same anion was also studied in the salt [Rh(f₆ fos)₂]⁺ [Rh(CO)₂ Cl₂]⁻ (see p.337).

Another example of a carbonyl group bridging via both the carbon and oxygen atoms, i.e. as M-CO-M', has been found in the product obtained from Hg[W(CO)₃(π -C₅H₅)]₂ and excess aluminium. The complex has the stoichiometry Al[W(CO)₃(π -C₅H₅)]₃(THF)₃, and an X-ray structural characterisation⁹ reveals the molecular geometry as (5). Bond distances suggest rather tight bonding of the metals to each end of the CO group, with a C-O distance of 1.25(2) Å, compared with 1.16(2) Å for the normal terminal CO groups in the molecule. Complexes containing metal-metal bonds. (a) Transition metal-main Group metal bonds. In the Group I complexes (ttas)AgCo(CO)₄ (6) [ttas = bis(o-dimethylarsinophenyl)methylarsine] and Ph₃PAuCo(CO)₄ (7), simple metal-metal bonds are present, with the carbonyl groups bent towards the axial metal atom¹⁰. The larger Ag-Co bond length is attributed to the higher coordination number of the silver atom. As in previous years, a summary of metal-metal bond lengths is contained in Table 1.

In Hg[Mn(CO)₅]₂ (8), the Mn-Hg-Mn sequence is linear; again the carbonyl groups are bent towards the mercury atom¹¹. Preliminary results for MFe(CO)₄ (M = Cd, Hg) suggest the zig-zag chain structure (9)¹².

A reaction between InBr and $Co_2(CO)_8$ in the presence of NEt₄Cl gives the yellow complex NEt₄ {Br₂In[Co(CO)₄]₂}. In the complex anion (10), the Co-In-Co angle is 124.3(4)°, with approximate tetrahedral geometry about the indium atom.

Further structural studies of transition metal—carbon clusters have been reported. The complex anion $[Fe_6(CO)_{16}C]^{2-}(11)$ [obtained from a reaction between $[Mn(CO)_5]^-$ and $Fe(CO)_5$] consists of an octahedral Fe_6 cluster containing a central carbon atom¹⁴. One of the iron atoms is not bonded to a bridging carbonyl group. The cobalt—carbon clusters

TABLE 1	
---------	--

METAL-METAL BOND DISTANCES

Bond	Length (A)	Complex		Reference
Zr-Si	2.813(2)	$(\pi - C_5 H_5)_2 Zr(SiPh_3)Cl$		17
Nb-Nb	3.105(5)	$[(\pi - C_s H_s)(\mu - C_s H_s)NbH]_2$		157
Nb-Ni	2.77	${\rm Ni}[({\rm SMe})_2 {\rm Nb}(\pi - C_5 H_5)_2]_2] ({\rm BF}_4)_2$		230
CrCr	1.975(5)	$Li_4Cr_2(C_4H_8)_4$		62
	2.650(4)	$(\pi - C_{s}H_{s})_{2}Cr_{2}(NO)_{3}(NH_{2})$		159
	2.97(1)	$[(Ph_3P)_2N]_2[Cr_2(CO)_{10}]$		38
	3.406(9)	$NEt_{4}[Cr_{2}(CO)_{10}H]$	(H-bridged)	38
Mo-Mo	2.167	$Mo_2(CH_2SiMe_3)_6$		61
	2.183(2)	$Mo_2(C_3H_5)_4$		130
	2.603(2)	$[(\pi - C_5 H_5) Mo(SMe)_2]_2$		33
	2.617(4)	$[(\pi - C_s H_s)Mo(SMe)_2]_2 PF_6$		33
	2.62(2)	$[(\pi - C_s H_s)Mo(SCCF_3)_2]_2$		34
	2.812(av.)	$[(\pi - C_s H_s)_3 Mo_3 S_4]$ SnMe ₃ Cl ₂		37
	3.123(7)	$[(Ph_3P)_2N]_2[Mo_2(CO)_{10}]$		38
Mo-Mn	2.961	$(\pi - C_s H_s)(CO)Mo(\mu - C_s H_4)Mn(CO)_4$		158
Mo-Re	2.909(2)	$[(\pi - C_{4}H_{4})MoRe_{2}(CO)_{8}](S)[SMo(CO)_{3}(\pi - C_{4}H_{4})]$		35
Mo-Ni	3.064(av.)	$[(Ph_1P)_2N]_2[Mo_2Ni_1(CO)_{16}]$		4 <u>1</u>
	3.151(av.)	[(Ph, P), N], [Mo, Ni, (CO)],]		41
W-Si	2.586(5)	$W_{2}(CO)$, $H_{2}(SiEt_{2})$,		18
	2.703(4)	$W_{a}(CO)_{a}H_{a}(SiEt_{a})_{a}$	[W-H-Si]	18
W-W	3.183(1)	$W_{2}(CO)_{e}H_{2}(SiEt_{2})_{2}$	(···)	18
W-Ni	3.057(av.)	[(Ph, P), N], [W, Ni, (CO),]		41
	3.158(av.)	[(Ph, P), N], [W, Ni, (CO),]		41
Mn-Mn	2.526	$(\pi - C_{+}H_{+})_{+}Mn_{+}(NO)_{+}(NO_{+})$		160
	2.893(4)	NEt. $[Mn, (CO), (N_{\star}), 1]$		7
	2.971(3)	Mn. (CO). (f. fars)		211
Mn-Hg	2.608(2)	HelMn(CO), L		11
Re-Re	2.957(1)	$(\pi - C_{*} H_{*})_{*} \text{Re}_{*}(CO)_{*}$		164
	2.985(1)	$[(\pi - C_{+}H_{+})M_{0}Re_{+}(CO)_{+}](S)[SM_{0}(CO)_{+}(\pi - C_{+}H_{+})]$		35
Fe-C	1.82 - 1.97(4)	(NMe_{1}) [Fe_C(CO)]		14
Fe_Sn	2.499(1)	$[(\pi - C_{e}H_{e})Fe(CO)_{a}SnPh(OSOPh)_{u}-OH]_{a}$		20
	2.562(4)	$(\pi$ -C ₄ H ₄)Fe(CO)(f, fos)SnMe.		215
Fe-Sb	2.49(2)	$Fe(CO)$, (SbMe_)		207
	$2527_{-2}540(3)$	$\{CISh[Fe(CO), (\pi - H_{2})\}\}$		26
Fe-Fe	2 215	$(C_{1}, t_{B}, t_{B}) = (CO)$		137
	2 5 3 5 (2)	$E_{2} (CO) (NSiMe)$		100
	2 5 39(7)	$(\pi_{1}C H)$ Ph Fe (CO)		190
	2 540(7)	$F_{\alpha} (CO) (PM_{\alpha} Ph)$	(CO-bridged)	41
	2.546(1)	$(Ph C=C=NM_{2})E_{2} (CO)$	(CO-bildged)	42
	7 553 .7 594(3)	$(m_2 C - C - Mie) re_2 (CO)_6$		195
	2 553-2 632(10)	(NMe) [Fe C(CO)]	(CO.bridged)	40
	2.555 - 2.052(10) 2.662 - 2.743(11)	$(NMe_4)_2 [\Gamma e_6 C(CO)_{16}]$	(CO-bildgea)	14
	2.667(5)	$F_{e}(\Omega)$ (f fars)	(Ea(2) Ea(2))	212
	2.607(3)	$F_{3}(CO)_{9}(r_{4}(as))$	(re(2)-re(3))	215
	2.000(7)	$(C H) = (CO)_{9} (C H (CO))_{3}$		42
	2.000(1)	$(C_1 H_3) F C_2 (CO)_6$ Eq. (CO) (f. form)	(E-(1) E-(2))	138
	2.717(3)	$I \cup_{3} (\cup U)_{9} (I_{4} (a))$	(re(1)-re(3))	213
P. P.	2.923(4)	$[(\pi \cdot \zeta_{s} H_{s}) Fe(U)(SMe)]_{2} BF_{4}$	(CO)	32
ге-ки	2.019-2.001	$H_2 \operatorname{reku}_3(\operatorname{LO})_{12}$	(CU-bridged)	43
	2.700	$n_2 \operatorname{reku}_3(U)_{12}$		43
reKn	2.368-2.613(3)	$(\pi \cdot \zeta_{s} H_{s}) KhFe_{3} (CU)_{11}$		46
n c	2.3/U-2.398(3)	$(\pi - C_s H_s)_2 \operatorname{Kh}_2 \operatorname{Fe}_2(CO)_8$		47
Ku–Ge	2.49(1)	$[Me_2 GeRu(CO)_3]_3$		21

(Table continued)

.

ORGANOMETALLIC STRUCTURES-TRANSITION METALS

TABLE 1 (continued)

Bond	Length (Å)	Complex		Reference
Ru-Ru	2.740(4)	$(C_{10}H_{A})Ru_{1}(CO)_{7}$	(CO-bridged)	50
	2.775-2.779	$HRu_{1}(CO)_{0}(C_{12}H_{15})$		51
	2.777-2.816	H, FeRu, (CO),		43
	2.831(3)	Ru, (CO), (f, fars)		214
. *	2.858(6)	Ru _n (CO) ₁₀ (f, fars)	(As-bridged)	214
	2.867(5)	H, Ru, (CO),		44
	2.885-2.914	H_2 FeRu ₃ (CO) ₁₂		43
•	2.926(9)	[Me. GeRu(CO),],		21
	2.929	$HRu_{1}(CO)_{1}(C_{1},H_{1})$	(H-bridged)	51
	2.944(5)	$(C_{10}H_{\bullet})Ru_{1}(CO)_{7}$		50
	2.954(3)	H, Ru, (CO),	(H-bridged)	44
Os-Os	2.730(2)	$O_{s_1}(CO)_{s_2}(OAc)_{s_1}$		45
Co-In	2.652(14)	NEt, $\{Br, In[Co(CO), l_{2}\}$		13
Co-C	1.89(2)(ay.)	$PhCCo_{1}(CO)_{2}(C_{1}H_{1}Me_{1})$		15
	1.92(3)(av.)	$C_{1}[CC_{0}(CO)_{0}]_{2}$		16
	1.96(1)(av.)	[CCo, (CO),],		15
Co-Sn	2.498(1)	$Cl_{sn}[Co(CO), (C_{T}H_{s})]$		23
	2.566.2.575(3)	Ph, $Sn[Co(CO), (C, H,)]$,		23
	2.58 - 2.62(1)	ClSn(Co(CO),],		22
Co-Sb	2.614(3)(av.)	$Sb_{A}Co_{A}(CO)_{12}$		28
CoCo	2.343	$Co_{4}(CO)_{4}(f_{4} fars)_{4}$		216
00 00	2.412	$Co_{c}(CO)_{c}(f_{c} fars)_{c}$		216
	2.441-2.477(5)	$PhCCo_{1}(CO)_{2}(C_{1}H_{1}Me_{1})$		15
	2.446	$Co_{a}(CO)_{a}(f_{a} fars)_{2}$	(As-bridged)	216
	2.447-2.462(7)	$C_{1}[CC_{0}, (CO)_{0}]_{1}$	-	16
	2.464-2.482	$Co_{A}(CO)_{10}(Ph, PC \equiv CCF_{3})_{2}$		49
	2.483(4)	Co ₂ (CO) ₆ (f ₄ fars)		217
	2.510(4)	$Co_{4}(CO)_{4}(f_{4} fars)_{2}$		216
Co-Ag	2.66(1)	(ttas)AgCo(CO)		10
Co-Au	2.50(1)	(Ph, P)AuCo(CO)		10
Rh-Rh	2.618(5)	$Rh_2(OAc)_2(dmg)_2(PPh_1)_2$		262
	2.648(3)	$(\pi - C_{2}H_{3})_{2}Rh_{2}Fe_{2}(CO)_{8}$		47
	2.717(5)(av.)	$N-n-Bu_{A}[Rh_{6}(CO)_{15}I]$		48
	2.755(4)(av.)	$N-n-Bu_{4}[Rh_{6}(CO)_{15}1]$		48
Ni-Ni	2.339(av.)	$[(Ph_{1}P)_{2}N]_{2}[W_{2}Ni_{3}(CO)_{16}]$		41
	2.341(av.)	$[(Ph_1P)_2N]_2[Mo_2Ni_3(CO)_{16}]$		41
Pt-Ge	2.433(2)	PtPh(GePh, OH)(PEt,),		25
Pt-Pt	2.581	Pt ₁ C ₂₀ H ₂₀		166
Cu-Cu	2.494-2.674(5)	[HCu(PPh,)]		52
Au-Au	2.689(3)	$\{Au_n \{P(p-tol), l_n\} (PF_n)\}$	(from central Au)	53
,	2,729(3)	$\{Au_{n} P(p-tol), l_{n}\} (PF_{n}),$	(from central Au)	53
	2.752-2.863(3)	$\{Au_{p}(P(p-tol), l_{p}\}(PF_{p})\}$	(peripheral)	53

 $[CCo_3(CO)_9]_2 (12)^{15}$ and $C_2 [CCo_3(CO)_9]_2$ ¹⁶ have been studied; the latter result confirms the independent determination on a different crystalline form, containing benzene of crystallisation, reported in 1970 (see AS70; p. 61). The structures of two complexes obtained from reactions between PhCCo₃(CO)₉ and mesitylene and cyclooctatetraene, respectively, reveal the mesitylene attached to only one cobalt in the former (13). The C₈ ring bonds to all three cobalt atoms in PhCCo₃(CO)₆(C₈H₈) (14); the hydrocarbon is in the tub conformation, but tilted so that three of the four double bonds can interact with the three metal atoms.

References p. 343

307

The structure of $(\pi - C_5 H_5)_2 Zr(SiPh_3)Cl(15)$ reveals an unexpectedly long Zr-Si bond [2.813(2) Å], although no explanation for this can be found at present¹⁷. Both the silicon and zirconium are approximately tetrahedrally coordinated. The complex $W_2(CO)_8 H_2(SiEt_2)_2$, obtained by irradiating a mixture of $W(CO)_6$ and $SiH_2 Et_2$, has structure (16), containing a planar WSi_2W system¹⁸. This contains both W-Si and W-W bonds, the former being of unequal length. The longer bonds are presumed to be two-electron, three-centre W-H-Si bonds.

The complex previously formulated as $(\pi-C_5 H_5)Fe(CO)_2 SnPh(OSOPh)(OH)$, and obtained from $(\pi-C_5 H_5)Fe(CO)_2 SnPh_3$ and SO₂, followed by ethanolysis of the product¹⁹, has been shown to be the centrosymmetric dimer (17), with an unusual dihydroxo bridge linking two five-coordinate tin atoms²⁰. The iron—tin bond length is identical to that found in $[(\pi-C_5 H_5)Fe(CO)_2]_2 Sn(OSOPh)_2$ [AS68; p. 353]. The full details of the structure determination of [Ru(CO)_3(GeMe_2)]_3, obtained by pyrolysis of Ru(CO)_4(GeMe_3)_2, have appeared²¹.

The molecular structure of $ClSn[Co(CO)_4]_3$ (18) shows distorted tetrahedral geometry about the tin atom (angles $CoSnCo \sim 114^\circ$) as a result of steric factors. The structures of $X_2Sn[Co(CO)_2(C_7H_8)]_2$ (X = Cl or C_6H_5 ; C_7H_8 = norbornadiene) (19), catalysts for the dimerisation of norbornadiene, show major derivations from the ideal tetrahedral geometry for the tin atom (see also AS70; p. 59)²³. The opening of the CoSnCo angle (X = Ph, 118.3°; X = Cl, 128.3°) as the electronegativity of X increases had been predicted from IR measurements on $X_2Sn[Co(CO)_4]_2$, although this method gives larger predicted angles than found. The diene occupies one axial and one equatorial site of the trigonal bipyramidal cobalt atoms.

The compound formulated²⁴ as $Pt(OH)(GePh_3)(PEt_3)_2$ was shown by X-ray diffraction methods to be *cis*-PtPh(GePh₂OH)(PEt₃)₂ (20), establishing that an internal migration of an organic group, perhaps across the metal-metal bond, has occurred²⁵.

The extensive work which has been reported on complexes containing Group IVB atoms

bonded to transition elements is not reflected in the neighbouring groups. Last year saw publication of accounts of the structures of the first complexes containing transition metal antimony clusters. The reaction between SbCl₃ and the anion $[(\pi-C_5H_5)Fe(CO)_2]^-$ affords $\{ [(\pi-C_5H_5)Fe(CO)_2]_3SbCl\}FeCl_4$, obtained as the dichloromethane solvate²⁶. In the complex cation (21), there is marked distortion from tetrahedral geometry about the antimony; one of the iron groups is rotated by approximately 143° about the Fe–Sb axis, and this feature destroys the pseudo-threefold symmetry of the cation. Comparisons with isoelectronic tin-containing systems underline the conclusion that $d_{\pi}-d_{\pi}$ bonding does not appear to be an important feature of the metal—tin or —antimony bond. Similar results have been reported independently by others²⁷.

The tetrameric complex $Co_4(CO)_{12}$ Sb₄ (22) has a cubane skeleton, joining the growing family of such molecules; this paper²⁸ includes a list of some seventeen complexes exhibiting this structural feature (see also AS70; p. 90). Whereas replacement of arsenic atoms in the As₄ tetrahedron by Co(CO)₃ groups stabilises the cluster, with antimony each triply-bridging Co(CO)₃ group is face-bonded, resulting in the present open structure, containing only Co-Sb bonds.

In the cluster complex $Co_3(CO)_9S$, the unpaired electron is supposed to occupy an antibonding orbital (with respect to the cluster orbitals). Detailed comparison of the structural parameters with those of the diamagnetic $FeCo_2(CO)_9S$ cluster (23) reveals that the metalmetal bond distances decrease by 0.083 Å, whereas the metal-sulphur distances are only slightly longer [2.139(4) Å for Co_3 , 2.158(4) Å for $FeCo_2$]. These results²⁹ provide the first structural evidence that electrons in excess of a closed-shell electronic configuration in an organometallic cluster occupy strongly antibonding metal orbitals. The determined bond distances are all equivalent [at 2.557 Å(av)], so that the crystal is disordered to the degree that each FeCo₂ unit is randomly distributed over three statistical orientations. These conclusions were further substantiated³⁰ by structure determinations of the complexes $Co_3(CO)_9Se$, $FeCo_2(CO)_9Se$ and $FeCo_2(CO)_9Te$; in the selenium complexes, the antibonding effect of the unpaired electron is less than found in the sulphur complex, as shown

M-M	M-X
2.637(3)	2.139(4)
2.616(1)	2.282(1)
2.554(3)	2.159(4)
2.577(1)	2.285(1)
2.598(2)	2.466(1)
	MM 2.637(3) 2.616(1) 2.554(3) 2.577(1) 2.598(2)

TABLE 2AVERAGE BOND DISTANCES IN M_3 (CO), X (A)

by the overall decrease in Co–Co bond length in the selenium complex. The distances are summarised in Table 2. The structure of $Co_3(\pi - C_5 H_5)_3 S_2$ has been briefly mentioned³¹.

The structures of several other cyclopentadienyl-metal-sulphur complexes have been determined. Oxidation of $[(\pi-C_5 H_5)Fe(CO)(SMe)]_2$ gives the cation (24), studied as the tetrafluoroborate³². The overall geometry of the cation is similar to that found previously for $[(\pi-C_5 H_5)Fe(CO)(SPh)]_2$. However, the Fe-Fe bond distance decreases from 3.39 Å in the neutral dimer to 2.925(4) Å in the cation. This result is explained in terms of removal of an electron from a strongly antibonding orbital (with respect to the two iron atoms), resulting in the formation of a one-electron metal-metal bond in the cation.

The molybdenum system $[(\pi-C_5H_5)Mo(SMe)_2]_2$, and the corresponding satt, $[(\pi-C_5H_5)Mo(SMe)_2]_2PF_6$ (25), both have the dimeric tetramercapto-bridged structure, and the metal—metal bonds in this case do not differ by more than 0.015 Å. This contrasts with the result obtained for the iron system (24), and is attributed to greater repulsion between the sulphur atoms in the neutral species³³. In addition, the Mo–S–Mo angles (64°), presumably already strained, effectively prevent closer approach of the two metal atoms. With these steric constraints, the constancy of the bond distance need not imply that there is no change in the bond order. Reference is also made³⁴ to a preliminary determination of the $[(\pi-C_5H_5)Mo(SCCF_3)_2]_2$ structure, which is suggested to be similar to (25), and that the corresponding vanadium complex is isostructural.

The reaction between $[\text{Re}(\text{CO})_4(\text{SSnMe}_3)]_2$ and $(\pi - C_5 H_5) \text{Mo}(\text{CO})_3 \text{Cl}$ affords the mixed metal-sulphur complex $[\text{Re}_2 \text{Mo}(\pi - C_5 H_5)(\text{CO})_8](S)[\text{SMo}(\pi - C_5 H_5)(\text{CO})_3]$ (26). The structure consists of an Re₂ Mo cluster bridged by a sulphur atom on one side (as a four-electron donor), and on the other by a SMo $(\pi - C_5 H_5)(\text{CO})_3$ group. The central sulphur atom is unusual in being tetrahedrally coordinated by the four metal atoms, using all six valence electrons³⁵. The only previous example is the complex $[\text{Fe}_2(\text{CO})_6(\text{SMe})]_2 \text{S}^{-36}$.

In the complex $[(\pi-C_5H_5)_3MO_3S_4]^+$ [SnMe₃Cl₂]⁻, the cation (26a) consists of a triangular MO₃ cluster, with one triply-bridging sulphur atom, and three doubly-bridging sulphur atoms³⁷. It is isostructural with $(\pi-C_5H_5)_3Mn_3(NO)_4$. The framework is a cubane-type with one $(\pi-C_5H_5)_MO$ group removed. Strong electron-pair interactions are indicated by the relatively short Mo–Mo and Mo–S bond lengths.

(b) Transition metal cluster complexes. Direct comparison of two complexes differing only by the presence of a bridging hydrogen atom is possible as a result of the structure determinations of $[M_2(CO)_{10}]^{2--}$ (M = Cr or Mo) (as their $[(Ph_3P)_2N]^+$ salts) and $[Cr_2(CO)_{10}H]^{2--}$ (as the NEt₄⁺ salt). Comparisons of the former with the isoelectronic $M'_2(CO)_{10}$ (M' = Mn or Tc, respectively) are also made³⁸. For isoelectronic pairs, the metalmetal bond distance is greater for the anion. $([M_2(CO)_{10}]^{2--}: M = Cr, 2.97(1) \text{ Å}; M = Mo,$ $3.123(7) \text{ Å}. M_2(CO)_{10}: M = Mn, 2.923(3) \text{ Å}; M = Tc, 3.036(6) \text{ Å}; M = Re, 3.04 \text{ Å}.)$ All four binuclear carbonyls (27) consist of two M(CO)₅ groups linked by a metalmetal bond, and have the staggered conformation. In contrast, the anionic hydride contains a linear Cr-H-Cr bond linking the two Cr(CO)₅ groups, which are eclipsed (28). The differing conformations may thus be attributed to Van der Waals interactions, and it is of interest that with Re₂(CO)₁₀, the eclipsed conformation is found in the vapour³⁹.

The formally related anionic carbonyl iodide $(Ph_3P)_2 N[Cr_2(CO)_{10}I]$ (29) contains a bent Cr–I–Cr sequence [angle 117.9(1)°], with Cr–I distances of 2.789 Å ⁴⁰.

Reactions between the dinuclear anions and Ni(CO)₄ have afforded a new type of cluster, the pentanuclear $[M_2Ni_3(CO)_{16}]^{2--}$ anions $(M = Cr, Mo, W)^{41}$. These contain trigonal-bipyramidal clusters (30), consisting of a planar Ni₃(CO)₃ arrangement, with CO groups bridging each edge. Each M(CO)₅ group is symmetrically attached to the Ni₃ group using only one delocalised electron-pair bond. Disorder results in two statistical orientations of the Ni₃(CO)₆ fragment. The three Ni-M distances to one M(CO)₅ fragment are 0.1 Å shorter than to the other M(CO)₅ group. An MO picture allowing greater stabilisation in the anions by preferential accumulation of charge density on one side of the Ni₃ plane suggests

mixing of the p_y and $d_{x^2 - y^2}$ orbitals, allowed by $C_{3\nu}$ geometry (the asymmetry in Ni-M bond lengths deforms the $M_2 Ni_3$ fragment from D_{3h} to $C_{3\nu}$ symmetry).

The structure of $Fe_3(CO)_9(PMe_2Ph)_3$ (31) closely resembles that of $Fe_3(CO)_{12}$, with symmetric carbonyl bridges⁴². In H₂ FeRu₃(CO)₁₃ (32) two Fe-Ru bonds are bridged asymmetrically by carbonyl groups [Fe-C, 1.68–1.86(7); Ru-C, 2.18–2.45(6) Å]; the two hydrogen atoms probably bridge Ru-Ru bonds so that the molecule as a whole has approximate mirror symmetry⁴³. The full details of the structure determination of the hexanuclear hydride, H₂ Ru₆(CO)₁₈, are now available⁴⁴. The symmetrical enlargement of, and distortion of carbonyl groups away from two opposite faces of the octahedral Ru₆ cluster suggest the presence of mutually *trans* face-bonded hydride ligands.

The binuclear osmium complex $Os_2(CO)_6(OAc)_2$ (33) contains a single Os–Os bond, bridged by the two acetate groups in a *cisoid* conformation⁴⁵.

Two mixed metal clusters obtained from the reaction between Fe₂(CO)₉ and $(\pi-C_5H_5)Rh(CO)_2$ are $(\pi-C_5H_5)RhFe_3(CO)_{11}$ (34) and $(\pi-C_5H_5)_2Rh_2Fe_2(CO)_8$ (35). The former is a tetrahedral cluster of three Fe(CO)₃ groups and a $(\pi-C_5H_5)Rh$ group, with two bridging [Rh--(CO)-Fe] carbonyl groups. However, the ligands are relatively crowded, and other, probably bonding, metal--carbonyl interactions occur⁴⁶. The Fe₂Rh₂ complex has a normal bridging carbonyl group associated with the two rhodium atoms, and two asymmetric carbonyl groups bridging iron and rhodium⁴⁷. Ligands about the cluster are also overcrowded, as in (34). The anion [Rh₆(CO)₁₅I]⁻ (36) consists of an octa-hedron of six rhodium atoms, with alternate faces triply-bridged by carbonyl groups. Five metal atoms bear two terminal carbonyls each, while the sixth has one carbonyl and the iodide ligand⁴⁸.

(c) Clusters containing organic ligands. The structure of $Co_4(CO)_{10}$ [Ph₂ PC=CCF₃]₂ (37) shows the first example of a complex in which coordination is via the phosphorus and carbon-carbon triple bond⁴⁹.

From the reaction between azulene and $Ru_3(CO)_{12}$, a trinuclear complex, $(C_{10}H_8)Ru_3(CO)_7$ (38), has been isolated⁵⁰, in addition to the tetranuclear one reported earlier (see AS69; p. 953). The azulene ligand is bonded to a triangular $Ru_3(CO)_7$ cluster, the metal atoms nearest the C_7 ring being bridged by a carbonyl group. Full details of the structure of $HRu_3(CO)_9(C_{12}H_{15})$ (39), containing a C_{12} -ring bonded to all three metal atoms, have now appeared. In last year's survey, the diagrams for this complex, and the related tetranuclear complex $Ru_4(CO)_{10}(C_{12}H_{16})$ (40), were confused; the two structures below indicate the salient features.

terminal CO group omitted for clarity

Although not failing within the usual definition of organometallic compounds, some clusters containing Group IB elements have been described. The copper hydride $[CuH(PPh_3)]_6$ (41), contains an octahedron of metal atoms with face-bonding hydride ligands⁵². Two phosphine-gold clusters are unusual in that they contain nine and eleven metal atoms,

Bonds from central Au atom in (43) not shown. Phosphine ligands are attached to Au not bonded to I.

respectively; both are derived from the icosahedron as shown. The Au₉ cluster in $\{Au_9 [P(p-tol)_3]_8\}^{3+}$ (42) is a centred icosahedron from which an equatorial rectangle is missing⁵³; the Au₁₁ clusters in $[Au_{11}(PPh_3)_7]^{3+54}$ and in Au₁₁ $[P(p-ClC_6H_4)_3]_7I_3$ (43)⁵⁵ can be similarly derived by replacing one face (three apices) by a gold atom.

Compounds containing metal-carbon σ bonds. Tetrabenzyl derivatives of the Group IV elements (44) are catalysts for the polymerisation of ethylene and α -olefins. The structures of titanium⁵⁶, zirconium⁵⁷, and hafnium⁵⁸ compounds have been determined, and compared with that of Sn(CH₂ Ph)₄ ⁵⁸. The four benzyl groups bond to the transition metals in a distorted tetrahedral arrangement, although they are still essentially σ -bonded. In contrast, the tin compound has almost perfect tetrahedral coordination. The benzyl carbon atoms are all coplanar (within each group). The most interesting feature is an apparent M-C interaction with the β -carbon atom, probably via a π overlap of the β carbon orbitals with empty metal d orbitals. This feature may also explain the unusual stability of these complexes.

A pseudo-tetrahedral arrangement of ligands about the titanium atom was found in $(\pi-C_5H_5)_2$ Ti $(C_6H_5)_2$ (45)⁵⁹.

The product from NbCl₅ and Me₃SiCH₂MgCl has the stoichiometry Nb₂(CSiMe₃)₂(CH₂SiMe₃)₄, with structure (46). The two metal atoms are bridged by the unusual Me₃SiC groups, with multiple Nb–C bonds; the resulting quasi-aromatic Nb–(C)₂–Nb ring explains the diamagnetism, there being no metal-metal bond. The tantalum analogue is isostructural⁶⁰. In contrast, the molybdenum compound, Mo₂(CH₂SiMe₃)₆, originally reported as Mo(CH₂SiMe₃)₄, has the staggered structure (47), with a molybdenummolybdenum triple bond. The tungsten derivative is isostructural⁶¹.

In Li₄Cr₂(C₄H₈)₄ (48), the tetramethylene groups form a CrC₄ heterocycle; two such

rings have a common metal atom, and are staggered with respect to the second chromium atom. The metal-metal bond is short, and there is some interaction between the four lithium atoms and the Cr-Cr quadruple bond⁶². An air- and water-stable organochromium complex can be obtained from the reaction between $\text{CrBr}_2(\text{THF})_2$ and the 2-methoxy phenyl (an) Grignard reagent; addition of 2,2'-bipyridyl gives dark red $[\text{Cr}(\text{an})_2(\text{bipy})_2]$ I (49). The chromium has distorted octahedral coordination, with Cr-C bond lengths 2.10(1) Å ⁶³.

An electron diffraction determination of the structure of $MeMn(CO)_5$ (50) has been described⁶⁴.

The chemical properties of the system

 $cis-MH(C_{10}H_7)(dmpe)_2 \rightleftharpoons M(C_{10}H_8)(dmpe)_2$

(M = Ru, Os)

suggest that the ruthenium compound behaves as the Ru⁰ complex, although physical data (IR, NMR) suggest the solid is the Ru^{II} complex. Crystal structures of the ruthenium and osmium complexes confirm⁶⁵ the latter finding, and show that the hydridic hydrogen is *cis* to the σ -naphthyl group in both complexes (51).

The structure of [Co(mn)(py)(salpn)] (52) $[mn = CH(CN)_2$; salpn = dianion of N,N'-bis(salicylideneimine)-1,2-propane] has been described briefly⁶⁶.

In trans-Ni(C_6F_5)(C_6Cl_5)(PMePh₂)₂ (53), the Ni- C_6Cl_5 bond is shorter than the Ni- C_6F_5 bond [1.905(10) vs. 1.978(10) Å]. Possible reasons for this include differences in $d_{\pi}-p_{\pi}$ metal->ligand back-bonding, in relative trans effects, and in Ni-C bond strengths⁶⁷. A comparison of available data on transition metal-aryl complexes shows that within the C_6 ring, the internal angle at the metal-bonded carbon decreases from 120° (range 112-116°), while those at the ortho-carbons increase (122-128°).

In cis-Pt(CN)(C=CCN)(PPh₃)₂ (54), the C-C triple bond is long, whereas the C-CN bond is short [at 1.24 and 1.31(5) Å, respectively], suggesting a degree of delocalisation of the type Pt=C=C=N⁶⁸.

The structure of $[Et_3PtCl]_4$ (55) is another example of the cubane-type structures now becoming common. The ethyl groups are sterically restricted within the molecule⁶⁹. A second structure determination⁷⁰ of $(\pi$ -C₅H₅)PtMe₃ (56) confirms the π -complex structure; no disorder was found in the carbon atom positions. The mean Pt-C(Me) distance is 2.11 Å.

The reaction between $C_2(CF_3)_2$ and AuMe(PPh₃) affords the binuclear complex $(Ph_3PAu)_2C_2(CF_3)_2$, shown⁷¹ to have the *cis* structure (57). It is the first ethylenic derivative in which each carbon is attached to a metal via a σ bond. The *ortho*-metallated complex Ph₂PC₆H₄Rh(PPh₃)₂ forms the unusual complex (58) on reaction with diphenyl-acetylene, containing a 5-phospha-6-rhodabenzocyclooctene heterocycle⁷². The σ,π -arrangement is also found in the bis-insertion product obtained from $(\pi$ -C₅H₅)Ru(PPh₃)₂H and C₂(CF₃)₂, which has structure (59), although in this case a 1,2,4-*trihapto*-butadienyl group is found⁷³.

Other unusual products containing metal—carbon σ bonds include catena-{Ni[C₆H₄(CO)₂- σ]I₂} (60), obtained from Ni(CO)₄ and 1,2-diiodobenzene⁷⁴, originally thought to be a benzyne complex, and three rhodium complexes. Addition of C₂(CF₃)₂ to Rh(acac)(COD) affords (61), containing a π -hexakis(trifluoromethyl)benzene,

together with a σ -bonded ligand formed by 1,4 addition of the alkyne to the Rh(acac) ring⁷⁵. With allyl alcohol, hydrated RhCl₃ gives (62), containing the novel tridentate C₆H₁₁O ligand shown; the complex is an efficient catalyst for the cyclisation of diallyl ether to 3-methyl-4-methylenefuran⁷⁶. With 2-methallyl alcohol, hydrated RhCl₃ gives yellow-brown [RhCl₂(C₈H₁₅O₂)]_n, which with 4-methylpyridine gives (63), containing a substituted furan σ -bonded to rhodium⁷⁷.

Ortho-metallated and related complexes. In recent years, the direct formation of metalcarbon σ bonds by reaction of suitable metal substrates with a variety of ligands has been noted. Among the first examples described were metallations of azobenzene (azbH) by palladium and platinum chlorides⁷⁸, and by nickelocene⁷⁹. This coordination-directed metallation, which in the particular case of aromatic derivatives, has been termed the orthometallation reaction, has been studied in more detail by several groups. Last year the structure of a palladium-azobenzene derivative was described (AS70; p. 68), as was that of a rhodium-phosphine complex.

The structure of a rhodium—azobenzene complex, $(azb)_2 Rh(OAc)$ (64), was the first of a complex containing a chelating phenylazophenyl group⁸⁰, and was followed later by structure determinations of a manganese—benzylideneaniline complex, $C_6H_5 N=CHC_6H_4 Mn(CO)_4$ (65)⁸¹, and of a palladium complex (66) obtained from

biacetylbis(N-methyl-N-phenyl)osazone⁸². In all cases, the complex contains a five-

membered ring involving a metal-carbon σ bond. A similar feature was found in the *ortho*metallated triphenylphosphite complex (67), obtained by controlled pyrolysis of IrHCl₂ [P(OPh)₃]₃ in refluxing decalin⁸³.

Reaction of $(\pi - C_5 H_5)_2$ TiPh₂ with carbon dioxide affords a product (68) which also contains an *ortho*-metallated aromatic group, although its formation is considered⁸⁴ to occur via insertion of CO₂ into a Ti–C bond of the benzyne complex (68a).

Studies of the intramolecular metallation of π -bonded olefins have profited by a series of structural determinations carried out on various metal complexes obtained from the olefinic tertiary phosphines and arsines (69a and 69b; ER₂ = PPh₂ or AsMe₂). The reaction between sp and M₃(CO)₁₂ (M = Fe or Ru) give M(CO)₃(sp) and M(CO)₂(sp)₂; the structure of the iron dicarbonyl derivative reveals that one ligand is chelated, while the second is monodentate *P*-bonded (70)⁸⁵. Addition of HCl or HBr to complexes of the first type gives octahedral σ -bonded chelate complexes, as exemplified by the structure of the ruthenium bromo derivative (71)⁸⁶.

The two products obtained from the reaction between MeMn(CO)₅ and sp have been shown⁸⁷ to be the π -oxopropyl complex (72), and the σ -oxobutyl complex (73). The formation of the former results from acetyl attack at the vinyl α -carbon, accompanied by hydride migration; complex (73) is formed by a similar reaction at the β -carbon atom of the coordinated sp ligand.

Bromination of the linear gold(I) complexes LAuBr (L = sp or ap) gave complexes of formula LAuBr₃ in which the ligand itself has also been brominated with concomitant formation of a gold—carbon σ bond⁸⁸. In the product derived from sp (74), a 5-membered ring with an envelope conformation is formed; the allylphenylphosphine reacts to give a 6-membered ring with a twist-boat conformation (75). In both cases, an exocyclic bromo-

methyl group is attached to the gold-bonded carbon atom. Solvolysis of the related platinum complex (76) in ethanol gives an ethoxy derivative, which proves to contain a 6-membered chelate ring, also with the twist-boat conformation (77). An analogy with the Wagner-Meerwein rearrangements occurring in ring expansions of cycloalkanecarbinyl systems is drawn⁸⁹.

Olefin complexes. The full account of the structure of hexamethylbicyclo[2.2.0] hexa-2,5-diene-chromium tetracarbonyl (78) (see AS68; p. 359) is now published⁹⁶. The ligand consists of two fused cyclobutene units with a dihedral angle of 113°, occupying two *cis* positions about the octahedrally coordinated metal atom.

The tetraphenylbutatriene ligand in (79) is coordinated to the iron atom via the central double bond; however, although the three double bonds are of equal length, they are longer than in the uncomplexed hydrocarbon⁹¹. The main effect of coordination is the bending back of the outer carbon atoms by nearly 30° .

A comparison of the geometries of Rh(acac)($C_2 H_4$)($C_2 X_4$) (80) (X = H or F) shows that tetrafluoroethylene is the more closely bound to rhodium, as expected from the relative π -acceptor properties of the two olefins⁹². In the tri-o-vinylphenylphosphine complex (81), the six olefinic carbons are nearly coplanar with the metal, which has trigonal bipyramidal coordination⁹³.

Full details of the duroquinone-rhodium complexes $(\pi - C_5 H_5) Rh(DQ)^{94}$ and

(acac)Rh(DQ) ⁹⁵, described last year (AS70; p. 70) have now appeared. The conformation of the duroquinone (non-planar boat) does not appear to depend on the nature of the "second" ligand attached to rhodium.

Some iridium-cyclooctadiene-tert-phosphine complexes exhibit temperaturedependent proton NMR spectra resulting from intramolecular rearrangements. The coordination of iridium in both $IrMe(C_8H_{12})(PMe_2Ph)_2$ (82) and $IrMe(C_8H_{12})(dppe)(83)$ is trigonal bipyramidal⁹⁶. The greater case of rearrangement in the latter may be related to the greater strain [cf. angles P-Ir-P in (82), 101.5(2)°, and (83), 84.9(2)°].

As briefly mentioned in the last survey, the structure of the prototype olefin complex, namely Zeise's salt, has been redetermined⁹⁷. This resulted from the discovery that the true space group is $P2_1/c$, whereas in previous determinations⁹⁸, the space group $P2_1$ had been used. The resulting parameters differ little from those previously established, although there are differences in the method of linking potassium coordination polyhedra. The Pt-Cl bond lengths, *cis* and *trans* to ethylene, are 2.305(7) and 2.327(5) Å respectively; the C=C bond is 1.37(3) Å, and is symmetrically π -bonded to platinum [Pt-C, 2.13(2) Å]. In the anion of (NMe₃Et)₂ [Pt₂Cl₆(C₄H₆)] (84), two PtCl₃ groups are linked by the *trans*-buta-1,3-diene ligand⁹⁹. The C-C bond lengths suggest that coordination involves a 1,4-addition to the diene, with the central C-C bond [1.36(3) Å] being shorter than the outer ones [1.51(3) Å]. This contrasts with the structure of [(π -C₅H₅)Mn(CO)₂]₂(C₄H₆).

The trans-but-2-en-1,4-diammonium complex (85) contains both optically active cations; this paper¹⁰⁰ also contains a summary of the relevant structural data from ten other complexes of this type. The absolute configurations of other platinum—olefin complexes have been determined: (-)-cis-dichloro(trans-2-butene) [(S)- α -phenethylamine] platinum (86)¹⁰¹, (+)-cis-dichloro[(S)-1-butene] [(S)- α -methylbenzylamine] platinum (87)¹⁰², and trans-dichloro(benzylamine)[(2R,3S)-3-methyl-1-pentene] platinum (88)¹⁰³.

The palladium complex (89) is monomeric, and contains the O-methyl-N-allylthiocarbamate ligand chelating via the sulphur atom and the double bond¹⁰⁴. The latter is short [1.30(4) Å], and indicates only a weak π -bond.

The copper(I) chloride complex of *trans*-cyclooctene of stoichiometry $Cu_2 Cl_2 (C_8 H_{14})_3$ has the chlorine-bridged structure (90), in which the coordination of one copper atom is trigonal-planar, and the other, a distorted pyramidal-trigonal arrangement¹⁰⁵. The $Cu_2 Cl_2$ system is non-planar and asymmetric.

Silver has been used as the heavy atom in structure determinations of cis-cyclodecene (91) and 1,1,4,4-tetramethyl-cis-cyclodec-7-ene (92)¹⁰⁶, trans-cyclododecene (93)¹⁰⁷ and exo-tricyclo[3.2.1.0^{2,4}] oct-6-ene (94)¹⁰⁸. Further details of the structure of the germacratriene complex have also appeared¹⁰⁹. In the aromatic series, the structure of the cyclohexylbenzene complex (95) has been described¹¹⁰, and in the silver complex of Antibiotic X537A, the silver is complexed to the phenyl ring in addition to five oxygen atoms¹¹¹.

Complexes containing three-, four- and five-membered rings. Structural data for many complexes formed by oxidative-addition or -elimination reactions are summarised in Table 3. These compounds are distinguished by the presence of a three-membered ring containing the metal. Current theories about the mode of bonding between the metal and the other two atoms favour a situation in which there is considerable back-bonding into the π^* orbitals of the multiple bond, resulting in an oxidation state approaching 2+ (Ni,Pd,Pt) or 3+ (Rh,Ir) for the metal, and considerable lengthening of the multiple bond. This is accompanied by a degree of rehybridisation of the atoms comprising the multiple bond, and is reflected in the structural parameters, as listed in the Table. An account of the major developments in this area was given at the 5th International Conference on Organometallic Chemistry, held in Moscow during August 1971¹¹².

The structures of several hydrocarbon complexes of this type have been described. A number of allene complexes have been synthesised. Full details of the structures of $Rh(acac)(C_7H_{12})_2$ and $[PtCl_2(C_7H_{12})]_2$ (C_7H_{12} = tetramethylallene) have appeared¹¹³. In both cases the coordinated allene is perpendicular to the coordinating plane, and behaves as a monoolefin; it is no longer linear.

3	
ABLE	
ΤA	

SOME STRUCTURAL DATA FOR 3-MEMBERED RINGS M

×	
e.	Ś
Ē	ž
ප	Ľ

A-B		
1.46(6)		263
6) 1.400(9)		264
) 1.40(2)		265
$\begin{cases} 1.30(4) \\ 1.40(5) \end{cases}$		266
) 1.35(2)	2 C=C:C 151(1)°	91
9) 2.388(7)		208
1.41(3)		92
1.42(1)	(C,H,)	92
) 1.40(2)	$(C_3 F_4)$	
1.40(1)	2 C=C:C 153(1)°	267
6) 1.373(8)	2 C=C:C 148(1)°	113
1.39(1)	2 C=C:C 144.5(6)°	267
) 1.41(3)		268
) 1.35(6)	2 C=C:C 158(4)°	269
9) 1.418(11)		270
1.431(20)		271
1.506(15)		272
9) 1.526(12)		120
) 1.30(3)		273
22) 1.509(26)	CH ₂ Cl ₂ solvate	274
9.5) 1.461(14)	1	124
16) 1.625(23)		270
 (6) 1.373(8) (7) 1.39(1) (7) 1.39(1) (7) 1.41(3) (7) 1.35(6) (7) 1.418(11) (7) 1.35(6) (7) 1.506(15) (7) 1.509(26) (7) 1.607(26) (L C=C:C 148(1)° L C=C:C 148.5(6)° L C=C:C 158(4)° L C=C:C 158(4)° CH ₃ Cl ₂ solvate

322

(Table continued)

(c) Bis(tertiary-phosphine)nickel complexes					
(Ph, P), Ni(H, C=CH,)	2.00(2)	2.02(2)	1.46(2)		275
(Ph ₃ P) ₃ Ni[(CF ₃) ₂ C=0]	1.89(2)	1.87(1)	1.32(2)		121
(f) Bis(isocyanide)nickel complexes					
(t-BuNC) ₂ Ni[(CN) ₂ C=C(CN) ₂]	1.956(4)	1.951(4)	1.476(5)		276
(t-BuNC) ₂ Ni(PhN=NPh)	1.897(4)	1.897(4)	1.385(5)		126
(g) Bis(tertiary-phosphine)palladium complex	SƏ				
(Ph ₃ P) ₃ Pd(S=C:S)	2.00(3)	2.305(11)	1.65(3)	L S=C:S 140(2)°	277
(h) Bis(tertiary-phosphine)platinum complexe	Si				
(Ph ₃ P) ₃ Pt[(CN)HC=CH(CN)]	2.05(2.4)	2.16(2.4)	1.53(3.6)		278
(Ph ₃ P) ₂ Pt[(CN) ₂ C=C(CN) ₂]	2.12(3)	2.10(3)	1.49(5)		279
$(Ph_3P)_3Pt[Cl_3C=C(CN)_3]$	2.00(2)	2.10(2)	1.42(3)		119
(Ph ₃ P) ₃ Pt(Cl ₃ C=CCl ₂)	2.02(3)	2.05(3)	1.62(3)		118
$(Ph_3 P)_2 Pt(H_3 C=C:CH_2)$	2.03(3)	2.13(3)	1.48(5)	L C=C:C 142(3)°	114
(Ph ₃ P) ₂ Pt(Me ₂ cyclopropene)	2.11(1)	2.12(1)	1.52(2)	•	117
(Ph ₃ P) ₂ Pt(PhC≡CPh)	2.06	2.01	1.32	∠ C=C-Ph 140	280
(Ph ₃ P) ₂ Pt (cyclohexyne)	2.023	2.055	1.289	L C≡C-C 127	115
(Ph ₃ P) ₂ Pt (cycloheptyne)	2.041	2.068	1.294	L C≡C−C 139	116
(Ph ₃ P) ₂ Pt[(CF ₃) ₂ C=NN:C(CF ₃) ₂]	2.02	2.11	1.44		122
(Ph ₃ P) ₂ Pt(S=C:S)	2.063(46)	2.328(16)	1.72(5)	L S=C:S 136.2(44)°	281
$(Ph_3 P)_3 Pt(O=0)$	1.90(5)	1.99(5)	1.26(5)	CH ₃ C, H ₅ solvate	282
	2.01(2)	2.01(2)	1.45(4)	1 ½C, H, solvate	283
	2.006(7)		1.505(16)	2CHCl ₃ solvate	123

The structure of $Pt(PPh_3)_2(C_3H_4)$, in contrast, shows that the allene lies in the coordination plane, and is also bent; the complex is isostructural with the carbon disulphide complexes $M(PPh_3)_2(CS_2) (M = Pd, Pt)^{114}$. Small-ring acetylenes have been stabilised by coordination to platinum. The structures of both the cyclohexyne¹¹⁵ and cycloheptyne¹¹⁶ complexes have been determined. The most significant differences between the two involve the ring interbond angles, the deformations at the coordinated triple bond being some $12-16^{\circ}$ more than calculated for the free cycloalkyne. The dimethylcyclopropene complex (96) contains an intact cyclopropene ring, in contrast to reactions of cyclopropane, which forms four-membered PtC₃ rings¹¹⁷. As expected, the C=C bond is lengthened, to 1.50(2)Å.

Complexes containing three-membered rings have most frequently been obtained using ligands, e.g. substituted ethylenes, containing electron-withdrawing groups, such as halogens or cyano groups. The structures of a series of these complexes, Pt(PPh₃)₂ (olefin), containing ClFC=CF₂, Cl₂C=CF₂, Cl₂C=CCl₂, and Cl₂C=C(CN)₂ were reported during the year under review¹¹⁸. On coordination the olefin loses its planar geometry, with the substituents being bent back from the central metal atom. Comparisons with the related tetracyanoethylene complex suggest that in the chloro- and chlorofluoroolefin complexes, the Pt-C distance is shorter than those found in the former complex. This problem was examined in more detail¹¹⁹ in the structure of Pt(PPh₃)₂ [Cl₂C=C(CN)₂], in which the two olefinic carbon atoms are not equidistant from the metal; the Pt-CCl₂ bond is 0.1 Å shorter than the Pt-C(CN)₂ bond. This difference is also reflected in the degree of bending of the CX₂ groups, the CCl₂ group being bent back by about twice as much as the C(CN)₂ group.

The structure of the product from TCNE and $IrH(CO)_2(PPh_3)_2$ was found to have the novel structure $Ir(C_6N_4H)(CO)(PPh_3)_2[(CN)_2C=C(CN)_2]$ (97)¹²⁰. Formal insertion of one of the CN groups into the Ir-H bonds has given a cyano(dicyanomethyl)keteniminato group attached to the metal via an Ir-N bond. Coordination of the second TCNE molecule

results in similar lengthening of the C=C bond, and bending of the $C(CN)_2$ groups away from the metal, to the complexes described above.

The hexafluoroacetone derivative Ni(PPh₃)₂(HFA) has a structure with a sideways coordinated carbonyl group, in which the C=O bond is lengthened by 0.09 Å relative to the free ketone¹²¹. A ring-expansion reaction of the analogous complex Ni(CNBu-t)₂(HFA) with (CF₃)₂ C=NH afforded the five-membered ring shown in (98), in which the entering imine has formally inserted into the Ni–C bond of the original complex.

A complex obtained from $Pt(PPh_3)_4$ and $(CF_3)_2 CN_2$ has the structure (99), in which one of the C=N double bonds is coordinated to the platinum¹²². Rapid inversion at the coordinated nitrogen atoms occurs in solution.

The dioxygen complex $Pt(PPh_3)_2O_2$ (as the chloroform adduct) has an O-O bond length of 1.505(16) Å, compared to a value of 1.45(4) Å determined in the benzene adduct. Differences in bond lengths caused by solvate molecules have not previously been considered, and may have some bearing on discussions concerning the relative amounts of back-bonding occurring with reversible and non-reversible dioxygen adducts¹²³. In $IrCl(CO)(PEtPh_2)_2(O_2)$, the bond distance is 1.461(14) Å, again emphasising that small changes in ligands cause significant changes in some bond distances¹²⁴. In contrast to these results, the adduct $RhCl(PPh_3)_2(O_2) \cdot CH_2 Cl_2$ (99a) was found to contain dimeric units, in which the dioxygen molecule is not only bonded to the rhodium in the usual manner [O-O, 1.44(2) Å], but also acts as a bridging ligand to the second metal atom¹²⁵.

A novel example of an unsaturated molecule π -bonded to nickel via two non-carbon atoms is found in the azobenzene complex Ni(CNBu-t)₂(PnN=NPh), which has structure (100). As with most complexes of this type, the N=N bond is significantly longer than in the free ligand [1.385(5) vs. 1.17, 1.23 Å]¹²⁶.

The reaction between cyclopropane and chloroplatinic acid gives $[PtCl_2(C_3H_6)]_n$; subsequent addition of pyridine affords $[PtCl_2(py)_2(C_3H_6)]$ (101), in which the platinum has inserted into the C₃-ring¹²⁷. Detailed discussion of the bond lengths in the C₃Pt ring was not possible because of limited diffraction data.

The reaction between RhCl(PPh₃)₃ and 1,2-bis(phenylpropynoyl)benzene gave the metallocyclopentadiene derivative (102), thought to be formed via a similar insertion reaction¹²⁸. Decarbonylation of RhCl(CO)(AsMe₃)₂ [C₄(CF₃)₄] in moist benzene affords (103), also containing a substituted metallocyclopentadiene ring¹²⁹. This complex is notable for the presence of a coordinated water molecule. As in RhCl(SbPh₃)₂ C₄(CF₃)₄ (AS70; p. 92), the RhC₄ ring is essentially planar.

Complexes containing acyclic 3-, 4-, and 5-electron donors. The structure of $Mo_2(C_3H_5)_4$ (104) reveals a strong quadruple metal—metal bond, with two symmetrically-bridging allyl groups¹³⁰. It is very similar to that of the chromium complex (AS69; p. 964).

The rhodium(III)—allyl complex (105) is obtained from Rh(dbm)(C_2H_4)₂ and allene; the four allene molecules have oligomerised to form a 2,5-bis(π -allyl)hexa-1,5-diene ligand¹³¹.

Palladium-allyl complexes whose structures have been determined include the β -(3-chloro-1-propen-2-yl)allyl derivative (106)¹³², and the cyclohexanone oxime complex (107)¹³³. In the latter, the oxime is coordinated to one palladium via the nitrogen atom. A chlorine forms a Cl^{....}H-O hydrogen bond with the oxime hydroxyl group. The norbornene- π -methallylpalladium insertion product, studied as the acetate (108), contains the 2-methyl-allyl-3-norbornyl ligand bonded via the allyl double bond, and a Pd-C σ bond from the norbornene residue¹³⁴.

A complete account of the structure of the envl-diene-cobalt complex, $Co(C_8H_{13})(C_8H_{12})$ has appeared¹³⁵ (AS69; p. 961).

The reaction between $Fe_2(CO)_9$ and an equimolar mixture of 1- and 2-bromomethylnaphthalene affords the substituted trimethylene—methane complex (109). Coordination to iron results in loss of aromaticity of the ring and consequent bond localisation¹³⁶.

The unusual complex (110), obtained from $Fe_3(CO)_{12}$ and $C_2 Bu-t_2$, has a very short Fe-Fe bond, apparently of bond-order two¹³⁷. The two acetylene ligands both bridge this bond. The C=C triple bonds are lengthened to 1.283 Å, and the t-butyl groups are bent back by some 37°.

Cycloheptatriene— $Fe_2(CO)_6$ has structure (111) in the crystal, and the proton NMR spectrum suggests this structure is preserved in solution¹³⁸. The complex is stereochemically rigid, and the differences between (111) and formally similar C_8 -ring complexes, which exhibit fluxional behaviour, are discussed.

The preparation of bis(diene)iron carbonyl complexes in three laboratories was followed quickly by a structural determination of $Fe(CO)(C_6H_8)_2$ (112). This complex is chiral, and the two C₆-rings differ in conformation. This feature may be a result of the predominance of 2π -bonding in one ring and π , 2σ -bonding in the other¹³⁹. Addition of tetracyanoethylene to cycloheptatriene—Fe(CO)₃ occurs 1,3 to give (113), in which the bicyclic C₉ ligand is attached in a 2,3,4,6-*tetrahapto* fashion, with the TCNE fragment *exo* to the Fe(CO)₃ group^{14C}. A complex with a related 1,2,3,6-*tetrahapto*-C₈-ring (114) is obtained from Ru(CO)₃(C₈H₁₂) and trityl cation, followed by reaction with cyanide¹⁴¹.

The structure of the acetylated azepine complex (115), obtained directly from the parent complex, confirms the spectroscopic assignment of structure¹⁴². In particular, substitution has occurred in the non-complexed part of the ring. The 1,2-diazepine complex (116) similarly contains the Fe(CO)₃ group bonded to the four carbon atoms adjacent to the NCO₂ R group; the outer two carbon atoms have some sp^3 character¹⁴³.

The absolute configuration of one of the two diastereoisomeric products (117) obtained from S- α -methylbenzylamine and the 1,5-dimethylpentadienyl-Fe(CO)₃ cation, determined by X-ray diffraction methods, proves conclusively that *exo* attack has occurred¹⁴⁴.

A full account of the structure of $3-[\pi-(2-cyclohexadienyl)]-\sigma$ -propenoyl-Fe(CO)₂ is available (see AS70; p. 77); this reveals that the iron atom has moved out of the pseudo-

mirror plane of the cyclohexadienyl ligand¹⁴⁵. Considerable strain results from the formation of the Fe–C σ bond to the side chain.

The reaction between tropone and $Mn_2(CO)_{10}$ affords the π -pentadienyl complex (118). The formation of this unusual oxaazulene derivative may involve ring opening of one tropone molecule followed by condensation with a second molecule, and subsequent rearrangements¹⁴⁶.

The tropone ring in its $Cr(CO)_3$ complex (119) is non-planar, although the distortion is not as much as that found in cycloheptatriene complexes; the carbonyl group is bent away from the metal, as shown¹⁴⁷. The bond lengths show some alternation, but it is suggested that the complex is best represented as (119a).

Cyclic conjugated systems. (a) C_3 and C_4 hydrocarbons. The structures of two cyclopropenylnickel complexes have been reported. In the mixed sandwich $(\pi$ -C₃Ph₃)Ni $(\pi$ -C₅H₅) (120), the rings are parallel, with the phenyl groups bent away from the metal and twisted out of the C₃-ring plane¹⁴⁸. The C₃-rings in (120), and in $[(\pi$ -C₃Ph₃)NiCl(py)₂] (121) (as its pyridine solvate)¹⁴⁹, are respectively 1.779 and 1.759 Å from the nickel atom; in both cases true π -complexes are formed.

The α -cyclobutadienyl-Fe(CO)₃ carbonium ion (122) can be isolated as the BF₄ salt, and the preliminary account¹⁵⁰ of the structure indicates that the two C₄-rings are closely coplanar with the exocyclic carbon and attached three carbon atoms, while the C₆-ring is twisted by 43°. This suggests that the stabilisation of this ion arises from the organometallic group, although the metal atom does not enter into any significant direct interaction with the exocyclic carbon atom.

(b) Cyclopentadienyl complexes. In the cyclopentadienyl series, the structures of both $M(C_5H_5)_4$ (M = Ti or Zr) molecules are described. The former complex contains two pentahapto and two monohapto C_5 -rings, resulting in a 16-electron configuration for titanium. The proton NMR spectrum has been interpreted in terms of $h^5 - h^1$ -cyclopentadienyl ring exchange, and the determined structure supports this conclusion¹⁵¹. The zirconium complex is reported to contain three pentahapto and one monohapto C_5 -rings, resulting in a 20-electron configuration for zirconium¹⁵². Unfortunately, partial decomposition of the crystal in the X-ray beam prevents a detailed analysis of variations in C-C and Zr-C bond lengths, and in the previous account, Cotton and coworkers¹⁵¹ suggest that $Zr(C_5H_5)_4$ contains one h^1 - C_5H_5 ring, one h^5 - C_5H_5 ring, and two of the severely tilted rings [as found in $(C_5H_5)_3$ MONO] which act as four-electron donors.

The zirconium halides $(\pi - C_5 H_5)_2 Zr X_2$ have been studied by X-ray $(X = F \text{ or } I)^{153}$ or

electron diffraction $(X = Cl)^{154}$ methods, and have a distorted tetrahedral coordination about the metal. The Zr-X bond lengths are: F, 1.98(1); Cl, 2.309(5); I, 2.832(2) Å, with X-Zr-X angles of: F, 96.2(3); Cl, 104(2); I, 96.2(1)°. The strange discrepancy in the Cl-Zr-Cl angle is not explicable at this time. The structure of the titanium analogue has not been determined in the crystalline state, although that of the trimethylene-bridged complex (123) shows a Cl-Ti-Cl angle of 93.69(5)°, with long Ti-Cl bonds of 2.368(4) Å.

There is no metal—metal bond in $[(\pi - C_5 H_5)V(CF_3 CO_2)_2]_2$ (124), the two metal atoms being bridged by the four trifluoroacetate groups. The low magnetic moment probably results from exchange interaction via the carboxylate ligands¹⁵⁶.

The dicyclopentadienyl niobium ("niobocene") complex has the unusual structure $(125)^{157}$. Essentially the molecule is a dimeric niobium hydride, with bridging C₅ H₄ groups, and terminal hydride and cyclopentadienyl groups. A similar type of bridging C₅ H₄ group was found in $(\pi$ -C₅H₅)(CO)Mo- μ -C₅H₄Mn(CO)₄ (126), obtained from the reaction between $(\pi$ -C₅H₅)₂MoH₂ and MeMn(CO)₅¹⁵⁸. In both cases, the M-C bond to the C₅ H₄ group is bent out of the C₅-ring plane. Evidence is also presented for the presence of similar groups in the analogous tungsten complex, in $(\pi$ -C₅H₅)(H)Re(C₅H₄)Mn(CO)₄, in "titanocene" and "tantalocene", and in the polymerisation catalyst $[(\pi$ -C₅H₅)Ti(C₅H₄)AlEt₂]₂¹⁵⁷.

In the crystal, the molecule of $(\pi - C_5 H_5)(NO)Cr(NO)(NH_2)Cr(NO)(\pi - C_5 H_5)$ (127) achieves mirror symmetry by disorder in the two bridging groups; the two C_5 -rings each occupy two alternative orientations¹⁵⁹. The manganese nitrosyl $(\pi - C_5 H_5)_2 Mn_2(NO)_3(NO_2)$ (128) is notable for the highly unsymmetrical bridging nitrosyl groups shown, indicative of donation of two electrons by each group to Mn^1 , but only one each to Mn^2 . A structure for $(C_5 H_5)_3 Mn_2(NO)_3$ is suggested¹⁶⁰.

Several structure determinations of phosphine-substituted cyclopentadienylmolybdenum

carbonyl derivatives include those of $(\pi$ -C₅H₅)Mo(CO)₂(PR₃)I (R = n-Bu¹⁶¹ or Ph¹⁶²), $(\pi$ -C₅H₅)Mo(CO)(PPh₃)₂NCO¹⁶³, and $(\pi$ -C₅H₅)Mo(CO)(dppe)Cl¹⁶². The dicarbonyls have *cis* (R = n-Bu) and *trans* (R = Ph) geometries for the carbonyl groups. In the isocyanate, formed in a photolytic reaction between $(\pi$ -C₅H₅)Mo(CO)₂(NO) and PPh₃, the two phosphines are mutually *trans*, although the proton NMR spectrum shows that the bulk sample is a 1/2 mixture of both isomers. The structure of the dppe complex has been independently determined (AS70; p. 80).

Irradiation of $(\pi - C_5 H_5) \operatorname{Re}(\operatorname{CO})_3$ affords yellow $(\pi - C_5 H_5)_2 \operatorname{Re}_2(\operatorname{CO})_5$ (129), containing a single bridging carbonyl group supporting the metal—metal bond¹⁶⁴. A somewhat similar structure had previously been suggested for Os₂(CO)₉.

The binuclear allylnickel dihydropentalenylene complex (130) has the two nickel atoms trans to each other¹⁶⁵. Green, diamagnetic $Pt_2 C_{20}H_{20}$ (from $PtCl_2$ and NaC_5H_5) has the unusual structure (131), where two (π -C₅H₅)Pt groups are bridged via olefinic bonds in one of the C₅-rings of a 5-cyclopentadienylcyclopentadiene unit¹⁶⁶.

Uranium is bonded symmetrically to each C_5 -ring in UCl(ind)₃ (132) and has tetrahedral coordination¹⁶⁷; the structure is similar to that of UCl(C_5H_5)₃.

(c) C_6 systems. Black UAl₃Cl₁₂(C_6H_6) is obtained from UCl₄, AlCl₃ and aluminium in benzene, and has structure (133), in which the C_6 -ring interacts symmetrically with the metal atom¹⁶⁸

Chromium tricarbonyl complexes of the large-ring hydrocarbons [14] annulene and *anti*-1,6:8,13-bismethano[14] annulene have been studied. The former undergoes a ring closure reaction, the resulting ligand being *trans*-6a,12a-dihydrooctalene; two $Cr(CO)_3$ groups are bonded in *trans* positions in (134)¹⁶⁹. The bridged annulene does not rearrange, and the structure (135) reveals that unusually only five carbon atoms (of the end ring containing two double bonds) are attached to the metal¹⁷⁰.

In the $Cr(CO)_3$ complex of bicyclo[4.4.1] undeca-1,3,5-triene (136), the metal is attached to a 6π homoaromatic ring, with the $C^1 - C^6$ separation 1.72(2) Å ¹⁷¹, comparable to that suggested for an analogous tricyclo[4.3.1.0^{1,6}] deca-2,4-diene complex (AS70; p. 82). In the complex with trimethylcyclohepta[b] thiophene (137), the metal is clearly attached to the C_7 ring by six of the carbon atoms, C^8 being bent up out of the ring plane¹⁷².

The hexaethylborazine complex (138) contains a B_3N_3 -ring, the overall geometry corresponding to that of $(\pi$ -C₆H₆)Cr(CO)₃. The nitrogen atoms are staggered with respect to the CO groups. Differing Cr–B and Cr–N bond lengths (corresponding to the difference between the respective covalent radii) lead to a puckered ring and chair conformation¹⁷³.

In Ru(π -C₆Me₆)₂ (139), one ring is planar, and forms a normal π -arene—metal bond. The second ring is bent about an axis passing through *para* carbon atoms, being attached to ruthenium via a 4π ,C₄ unit. Conjugation in this ring is disturbed, and the non-coordinated double bond is localised¹⁷⁴.

(d) C_7 and C_8 hydrocarbons. The complex $C_7H_7[(\pi-C_5H_5)Mo(CO)_2]$ [Fe(CO)₃] (140) is the only reported example of a fluxional compound containing two separate metals. The structure of this complex, and of the related molybdenum complex (141) have been reported¹⁷⁵. In the latter, the $(\pi-C_5H_5)Mo(CO)_2$ group is attached to a three-carbon unit of the C_7 -ring, while in (140), the Fe(CO)₃ is attached on the other side of the ring to the remaining four carbons.

The cerium-cyclooctatetraenyl complex $[Ce(C_8H_8)(THF)_2Cl]_2$ is a chlorine-bridged dimer (142). The C₈ rings in all these complexes are planar, and should be considered to be examples of the $10\pi(C_8H_8)^{2-}$ system¹⁷⁶. The uranium complex of 1,3,5,7-tetramethylcyclooctatetraene has a unit cell in which two types of molecule are present; in one the methyl groups are eclipsed, while the second has them staggered (143)¹⁷⁷. The titanium derivative $(\pi-C_5H_5)Ti(\pi-C_8H_8)$ (144) has the expected C_5-C_8 sandwich structure¹⁷⁸

Complexes containing boron ligands. The structure of the anion in $Cs[Cr(B_9C_2H_9Me_2)_2]$ (145) consists of two icosahedra sharing a common apex, the chromium atom. The latter is bonded to two B_3C_2 faces, the two methyl groups on each face being as remote as possible from each other. Complete details of the structure of $Co[(B_9C_2H_{10})_2S_2CH]$ (146), from CS_2 and $K[Co(B_9C_2H_{11})_2]$, have been published; the two boron ligands are linked by a delocalised $[S-C-S]^+$ unit.

ORGANOMETALLIC STRUCTURES-TRANSITION METALS

Isonitrile derivatives. The coordination of the eight carbon atoms about molybdenum in $Mo(CNMe)_{4}(CN)_{4}$ (147) is triangular dodecahedral. The tungsten complex is isomorphous.

The structures of cis-PtCl₂ (CNEt)(PEt₂ Ph) (148) and cis-PtCl₂ (CNPh)₂ (149), of some interest as being precursors of carbene complexes, have been determined. Both are square-planar platinum(II) complexes. The Pt-C bond distances indicate that the π -acceptor strength decreases: CO > RNC > carbene, although the *trans* influences of RNC and CO are comparable.

Carbene, nitrene and related complexes. A complexed carbene containing two heteroatoms is present in $Cr(CO)_5 C(OEt)NEt_2$ (150); only the *trans* configuration is present in the solid state¹⁸³. Reaction of $[PtCl_2(PEt_3)]_2$ with an electron-rich olefin has given complex (151) in which the carbene is *trans* to phosphine; the carbene *trans* effect is estimated as about equal to that of a tertiary phosphine¹⁸⁴.

Addition of hydrazine to $PdCl_2$ (MeNC)₂ afforded the chelate complex (152)¹⁸⁵, and the similar reaction between MeNH₂ and [Fe(MeNC)₆]²⁺ produced the four-membered chelate ring shown in (153)¹⁸⁶. In both complexes, coordination involves trigonal carbon atoms, although structures with delocalised N–C–N units are preferred over the carbene description. Similarly, in the platinum-pyridinium propylide complexes (154) and (155), first reported in 1966¹⁸⁷, the ylide formulation, rather than the isomeric carbene, is favoured on the basis of the stereochemistries of the metal-bonded carbon atoms, both tetrahedral¹⁸⁸.

The reaction between $Mn(CO)_5$ Br and $C(PPh_3)_2$ produces the unusual complex (156), containing a phosphonium acetylide ligand¹⁸⁹.

Trimethylsilylnitrene has been stabilised in $Fe_3(CO)_{10}NSiMe_3$ (157), obtained from $Fe_3(CO)_{12}$ and Me_3SiN_3 ; the coordination about the triply-bridging nitrogen atom approximates to tetrahedral¹⁹⁰.

Complexes containing Group V donor ligands. (a) Nitrogen-containing ligands. The complex $[Mo(CO)_3(py)(bipy)]$ (158) has mutually cis carbonyl groups, in agreement with the structure deduced from IR measurements. However, there is some distortion from ideal octahedral geometry¹⁹¹. The reaction between 3-chloro-2-methylnitrobenzene and Fe(CO)₅ affords the complex {Fe(CO)₃ [C₆H₃Cl(Me)NO]}₂, which has structure (159). The nitroso groups bridge the iron atoms unsymmetrically, with a planar Fe₂N₂ ring¹⁹². No metal-metal bond is present. The azabutadiene complex (Ph₂C=C=NMe)Fe₂(CO)₆ has a new type of C₂N unit bridging the two iron atoms (160)¹⁹³, reminiscent of the thioketocarbene complex reported last year (AS70; p. 90).

The rhodium complex RhCl(CO)₂(diaz) (161), obtained from the reaction between $[Rh(CO)_2 Cl]_2$ and 3,5,7-triphenyl-4H-1,2-diazepine, contains the unchanged ligand bonded to rhodium by only one nitrogen atom¹⁹⁴. Bond distances in the tetrazene—iridium complex (162) favour the iridium(III) formulation shown; the four nitrogen atoms are coplanar¹⁹⁵.

(b) Phosphorus, arsenic and antimony ligands. The structures of $Cr(CO)_2(PH_3)_4^{196}$ and of cis-Fel₂(CO)₂(PH₃)₂¹⁹⁷ have been reported. In the former, there are two Cr–P distances, a lengthening being found in the bond trans to CO [2.338(4) vs. 2.282(4) Å], and is taken as a further indication of the π -acidity of PH₃ (see AS69; p. 984). The trifluorophosphine derivative, Mo(CO)₅(PF₃), has been studied by electron-diffraction methods¹⁹⁸. The Mo–P bond length is some 0.08–0.13 Å shorter than found for other phosphine complexes. Trifluorophosphine appears to be a better π -acceptor than CO, the equatorial CO groups being bent away from the PF₃ group [P–Mo–C, 92(2)°]. An independent electron-diffraction investigation¹⁹⁹ of the Ni(PF₃)₄ structure (AS70; p. 89) has given values of bond distances and angles in good agreement with those reported earlier. Some differences are noted in the parameters involving rotation-sensitive distances. The structure of RhCl(PF₂NEt₂)₂(PPh₃) (163) has also been reported²⁰⁰.

The tetracarbonyl Mo(CO)₄ [(PPh₂)₂ CH₂] (164) shows significant shortening of the Mo–CO bonds *trans* to phosphorus [1.93(1) vs. 2.04(2) Å]²⁰¹. Two complexes obtained from P₂ Et₄ and molybdenum hexacarbonyl are the binuclear Et₄ P₂ [Mo(CO)₅]₂ (165)²⁰², with a zig-zag Mo–P–P–Mo chain, and the phosphorus-bridged [Et₂ PMo(CO)₄]₂ (166)²⁰³.

The formally electron-deficient complexes obtained by halogenation of Group VI carbonyls, followed by addition of phosphine or arsine, have been shown to be monomeric. The molybdenum derivative, $MOBr_2(CO)_2(PPh_3)_2$ (167), is non-octahedral; this feature is related to the paramagnetism of the complexes²⁰⁴. Easy addition of carbon monoxide results in formation of the tricarbonyls, which are disordered and have a three-fold axis. Complexes with the chelating ligand $CH_2(AsPh_2)_2(dam)$ also behave as CO-carriers:

 $M(CO)_3(dam)_2 X_2 (168) \neq M(CO)_2(dam)_2 X_2 (169) + CO (M = Mo \text{ or } W)$

Both complexes are seven-coordinate, the arsenic ligands being monodentate in (168), with one chelating in (169). In other respects the configurations of the two complexes are similar²⁰⁵.

335

With chromium carbonyl, this ligand forms the unusual complex (170), in which one of the phenyl groups is π -bonded to the metal²⁰⁶.

Trimethyl-arsine and -stibine complexes of iron carbonyl, $Fe(CO)_4(EMe_3)$ (E = As, Sb) have the expected trigonal bipyramidal structure²⁰⁷. The equatorial CO groups are bent towards the ligand by about 2°.

The first example of a complex containing the arsenobenzene ligand has been obtained from Fe(CO)₅ and $[AsC_6F_5]_4^{208}$. The resulting complex has structure (171). The ligand may be considered to bond via an As-As multiple bond formally similar to that in the azobenzene complex (100) (see p. 325). The As-As bond length [at 2.388(7) Å] is shorter than that in (AsPh)₆ [2.456(5) Å], and longer than the double bond in As₂Co₂(CO)₅(PPh₃) [2.273(3) Å].

Other examples of complexes containing P-donor ligands whose structures are of interest include the fluxional hydride HCo[PPh(OEt)₂]₄ (172)²⁰⁹, and the cation [Ir(PMePh₂)₄]⁺ (173), in which approach by additional ligands such as carbon monoxide or oxygen is severely hindered²¹⁰ (cf. the ready formation of an oxygen adduct by [Ir(dppe)₂]⁺).

(c) Fluorocarbon phosphine and arsine ligands. Structural determinations of several complexes obtained from the fluorocarbon derivatives prepared from perfluorocyclobutene and perfluorocyclopentene, namely f_4 fos (174), f_6 fos (175), f_4 fars (176) and ffars (177) have been reported, together with some complexes of the related ligands derived from fluorinated ethylenes, (178), (179) and (180).

Manganese and rhenium carbonyls react with f_4 fos and f_4 fars to give the binuclear complexes $LM_2(CO)_8$; a structure determination²¹¹ of the manganese— f_4 fars complex (181) revealed the ligand-bridged metal—metal bonded structure shown. Ready cleavage of the metal—metal bond occurs with iodine, to give(f_4 fars) [Mn(CO)_4 I]_2. A preliminary report of the structure (R = 15.3%) shows no Mn—Mn bond, with rotation of the Me₂ As groups resulting in the Mn(CO)_4 I groups being on opposite sides of the C₄ ring. Distorted tetrahedral coordination about the iron atom is found in $(f_6 \text{ fos})Fe(NO)_2$ (182); the P-Fe-P angle is smaller than tetrahedral (86.8°). The nitrosyl groups are linear. Bond distances indicate a considerable degree of metal-to-ligand back donation via the NO π^* orbitals²¹². Reaction of f_4 fars with Fe₃(CO)₁₂ gives a trinuclear complex (183) in which the cluster has rearranged, and an AsMe₂ group has been cleaved from the ligand²¹³. Three Fe(CO)₃ groups and the AsMe₂ group are linked in a distorted square-planar arrangement, and are held together via Fe--C σ bond, a C=C bond, and an arsenic σ donor bond to the thrée metal atoms. In the reaction of this ligand with Ru₃(CO)₁₂, the complex (f_4 fars)Ru₃(CO)₁₀ (184) is formed, retaining the triangular Ru₃ cluster, and with the ligand bridging two metal atoms²¹⁴. In the complex (π -C₅H₅)Fe(CO)(f_6 fos)SnMe₃ (185), the ligand is monodentate²¹⁵; the Fe--Sn bond is about 0.03 Å longer than that in (π -C₅H₅)Fe(CO)₂ SnPh₃.

Disproportionation of the cluster in $CF_3CCo_3(CO)_9$ occurs on reaction with f_4 fars, giving a tetranuclear complex, $Co_4(CO)_8(f_4$ fars) (186)²¹⁶. The four metal atoms form a tetrahedral cluster, each f_4 fars ligand bridging two cobalt atoms. All carbonyl groups are terminal, in contrast to $Co_4(CO)_{12}$, which contains three bridging CO groups. Weak interactions of the carbon atoms of some CO groups with adjacent metal atoms are present. The full details of the structure determination of f_4 fars) $Co_2(CO)_6$ are available²¹⁷ and include a summary of other determinations of Co–Co bond lengths.

The reaction between f_6 fos and $[Rh(CO)_2 Cl]_2$ affords the salt $[Rh(f_6 fos)_2]^+ [Rh(CO)_2 Cl_2 - cis]^-$, the cation having structure (187). Both the fluoro-carbon and RhP₂C₂ rings are puckered, with square-planar coordination about the rhodium atom²¹⁸.

Initial results of structural studies of complexes of the type $(Me_2 E-CFR-CF_2 EMe_2)M(CO)_4$ (188) (M = Cr, Mo; E = P, As; R = H, CF₃) which suggested considerable contributions from the canonical form (188a), have now been modified.

The conclusions were drawn from unusually longer CF bond distances, and comparisons with related structures indicate that the crystal contains a disordered arrangement of molecules with normal geometries and dimensions. The structural studies involve the following molecules: $Me_2 As-CF(CF_3)-CF_2 AsMe_2 Mo(CO)_4^{219,220}$, $Me_2 AsCFH-CF_2 AsMe_2 Mo(CO)_4^{219,221}$, $Me_2 PCFH-CF_2 PMe_2 Mo(CO)_4^{219}$, and $Me_2 AsCFHCF_2 AsMe_2 Cr(CO)_4^{219}$.

Ligands containing sulphur. The reaction between CS_2 and $ReH(CO)_2(PPh_3)_3$ affords a dithioformato complex, shown to have structure (189), in which the two phosphine groups are trans²²². The dithiobenzoate, $Re(S_2 CPh)(CO)_4$ (189a) has a related structure; the rhenium has distorted octahedral coordination²²³. As expected the Re-CO bonds trans to the sulphur atoms are lengthened, by about 0.06 Å. The chelate complex, $(\pi-C_5 H_5)_2 Mo(S_2 C_6 H_4)$, exists in two conformations in the crystal, with a staggered or eclipsed arrangement of the C₅ rings. The benzene-1,2-dithiolate group completes a distorted tetrahedral coordination about the metal atom. A small (9°) bending of the chelate group out of the MoS₂ plane was found²²⁴.

The reaction between $(\pi - C_5 H_5)_2$ TiCl₂ and polysulphide ion gives $(\pi - C_5 H_5)_2$ TiS₅, with structure (190). The main feature is a six-membered TiS₅ ring having a chair configuration²²⁵. The related tungsten complex $(\pi - C_5 H_5)_2$ WS₄ (191) contains a non-planar WS₄ ring which is symmetric with respect to the two C₅ rings²²⁶. Some evidence for $d_{\pi} - d_{\pi}$ back bonding from tungsten to the terminal sulphur atoms was obtained.

Mercapto-bridged complexes. Sulphur-bridged binuclear transition metal complexes, particularly the Mo-S-Fe system, are important in biological systems e.g. nitrogenase. The structures of several examples of this type of complex have been reported²²⁷. Most contain a planar $M_{-}(S)_2 - M^1$ ring, although the dimensions vary. In the complexes

 $(\pi$ -C₅H₅)₂W(SPh)₂M(CO)₄ (192) (M = Cr, Mo, W), the metal-metal distances are all ca. 4.0 Å, with M-S-M¹ angles > 90°. The complex $(\pi$ -C₅H₅)₂Ti(SMe)₂Mo(CO)₄ (193) in contrast, has a Ti-Mo separation of 3.32 Å, with the angle at sulphur 82.8°. Spectroscopic properties also indicate a metal-metal interaction in this complex^{227,228}. The two methyl groups lie on the same side of the Mo-S₂-Ti plane. An example of a complex more closely approaching the nitrogenase system is $(\pi$ -C₅H₅)₂Mo(SBu-n)₂FeCl₂ (194), and the important difference from the complexes already discussed is the bent Mo-S₂-Fe fragment; the inclination of the MoS₂ and FeS₂ planes is 148°²²⁹. The Mo-Fe separation is 3.66 Å. In $[(\pi$ -C₅H₅)₂Nb(SMe)₂Ni(SMe)₂Nb(π -C₅H₅)]²⁺ (195), the nickel is tetrahedrally coordinated; within the Nb-(S)₂-Ni ring there is substantial metal-metal bonding. Formally, the nickel can be considered to be zerovalent, unusually stabilised by sulphur ligands and a Ni→Nb two-electron donor bond²³⁰.

Complexes containing sulphur-oxygen ligands. Sulphur dioxide insertion products are of some current interest; the structure of the product from SO₂ and the σ -phenylallyl complex (π -C₅Me₅)Fe(CO)₂CH₂CH=CHPh is (196), showing that no rearrangement of the allyl fragment has occurred. The ligand is S-bonded²³¹. With (π -C₅H₅)Fe(CO)₂CH₂C≡CMe, the adduct (197) contains a sultine ring system, probably formed by rearrangement of an initial product from reaction of SO₂ with the acetylenic group²³². The structure of (π -C₅H₅)Fe(CO)₂SO₂C₆F₅ (198), reveals²³³ the expected S-bonded ligand, with some double bond character, as also found in (196).

Dinitrogen complexes. The similarities and differences between CO and N_2 as ligands in transition metal complexes are sufficient to justify inclusion of structures of complexes containing dinitrogen as a ligand in this survey. The rhenium complex $\text{ReCl}(N_2)(\text{PMe}_2\text{Ph})_4$ is of interest for several reasons: (i) there is a carbonyl analogue; (ii) it has a low $\nu(\text{NN})$, at 1922 cm⁻¹; (iii) it reacts with MoCl₄-etherate to form a complex probably containing the Re-N-N-Mo sequence. The complex is octahedral, with *trans* Cl and N₂ ligands, with partial disorder between these two groups²³⁴.

The molybdenum complex Mo(N₂)₂ (dppe)₂ (199) has mutually *trans* dinitrogen ligands, with Mo–N–N angles of $171.8(1.1)^{\circ 235}$.

A complex containing a bridging dinitrogen ligand has been obtained from nickel acetylacetonate and AlMe₃ in the presence of PCy₃ and nitrogen. The structure of $[(Cy_3P)_2Ni]_2N_2$ (200) reveals a linear Ni–N–N–Ni system, with the dinitrogen bridge enclosed in a cage formed by four cyclohexyl groups²³⁶.

For convenience, a reference list of structures of dinitrogen complexes is given in Table 4.

STRUCTURAL STUDIES ON DINITROGEN COMPLEXES							
Complex	Bond distance	Bond distances (Å)		Reference			
	M-N	N-N	- MN-N				
$CoH(N_2)(PPh_3)_3, Et_2O$	1.80	1.16	175	284			
$CoH(N_2)(PPh_3)_3^a$	∫1.829(12)	1.123(13)	178(1)	285			
	<u></u> 1.784(13)	1.101(12)	178(2)				
$[Ru(N_{2})(NH_{3})_{5}](BF_{4})_{2}$	2.10(4)	~1.03		286			
$[Ru(N_2)(NH_3)_3]Cl_2$	2.10(1)	1.12(8)	~180	287			
$[Ru(N_2)(N_3)(en)_2]PF_6$	1.894(9)	1.106(11)	179.3(9)	288			
$Re(N_2)Cl(PMe_2Ph)_4$	1.966(21)	1.055(30)	177(1)	234			
$Mo(N_2)_2$ (diphos),	2.01(1)	1.10(2)	171.8(1.1)	235			
${N_2[Ru(NH_3)_5]_2}(PF_6)_4$	1.928(6)	1.124(15)	178.3(5)	289			
$N_{2}[Ni(PCy_{3})_{2}]_{2}$	1.77; 1.79	1.12	178.2	236			

TABLE 4

^a Two independent molecules.

Nitrosyl complexes. Although not strictly organometallic, many nitrosyl complexes show features which have relevance to the bonding of more conventional ligands to metals. Consequently, reports on the structures of these compounds are considered here. Most contain NO bonded to a metal—phosphine complex. Within the last few years, it has become apparent that two different types of metal—nitrosyl group, namely a linear M—N—O arrangement, and the so-called bent M—N—O group, can be recognised. In the latter, the angle at nitrogen is generally of the order of 120°, and the NO group is considered as a one electron donor (NO⁻), whereas in the linear M—N—O group, NO acts as a three-electron donor (NO⁺). This point is discussed in detail by others²³⁷.

Linear M–N–O coordination was found in Ru(NO)H(PPh₃)₃ (201) and $[Ru(NO)(diphos)_2]^+ (202)^{238}$, in contrast to both types found in $[Os(OH)(NO)_2(PPh_3)_2]^+ (203)^{239}$, and in $[Ru(NO)_2 Cl(PPh_3)_2]^+ ^{240}$. The latter two complexes are coordinatively unsaturated d^6 systems. In the iridium complex $[IrH(NO)(PPh_3)_3]^+$, isoelectronic with (201), the Ir–N–O is linear, and this is best formulated as an Ir^I complex²⁴¹. The bent Ir–N–O groups in IrCl₂(NO)(PPh₃)₂ (205)²⁴² and IrIMe(NO)(PPh₃)₂ (206)²⁴³ similarly indicate that these may be considered as iridium(III) complexes.

In the pseudo-tetrahedral Ni(N₃)(NO)(PPh₃)₂ (207), the Ni–N–O angle is 152° ; in fourcoordinate complexes, this angle appears to be strongly dependent on the nature of the ligands and the coordination geometry²⁴⁴. Particularly, the equilibrium Ni–N–O angle will depend on mutual interaction of $d \rightarrow \pi^*$ bonding, and d electron-ligand repulsions. The structure of Ir(NO)(PPh₃)₃ (208) is discussed in terms of unbalanced packing of chiral molecules; the Ir–N–O group is linear²⁴⁵.

Other examples of nitrosyl complexes, all containing cobalt, whose structures have been reported, include $[Co(NO)_2 Cl]_2^{246}$, $Co(NO)_2 NO_2 (210)^{247}$, $Co_4(NO)_8 (NO_2)_2 (N_2O_2)$ (211), containing bridging nitrite groups, and a quadridentate hyponitrite ligand²⁴⁸, the compound $[Co(NO)(NH_3)_5]Cl_2^{249}$, and the Schiff-base complex $(212)^{250}$.

Ferrocene derivatives. The structure of *trans*-β-ferrocenylacrylonitrile reveals no unusual *References* p. 343

features which might cause the substantial differences from the *cis* isomer observed in some physical properties (e.g. proton NMR spectra). The acrylonitrile group is almost coplanar with the cyclopentadienyl ring; the crystal contains molecules of only one optical isomer (configuration not established)²⁵¹. The C₅ rings have a conformation intermediate between eclipsed and staggered (angle 20°) (referred to eclipsed (0°) and staggered (36°)).

The structure of $[FcCH_2 NHMe_2^+]_2 ZnCl_4^{2-}$ dihydrate, an intermediate in the ZnCl₂catalysed self-condensation of *N*,*N*-dimethylaminomethylferrocene, consists of ionic layers with the nitrogen side chains projecting into the layers²⁵². Extensive hydrogen bonding is found with N-H····Cl, N-H····O and O-H····Cl systems. The C₅ rings are nearly eclipsed (7°). Reaction of FcCH₂ NMe₃⁺I⁻ with formamide affords the *N*-formylaminomethyl derivative; two distinct molecules are linked by two different N-H····O bonds in an alternating head-to-tail manner²⁵³. The relative conformations of the nearly eclipsed rings in the two molecules are -7.8° and +4.2°; in the side chains, the four heavy atoms are nearly coplanar.

The reaction between PhMgBr and racemic 2-propionyl-1,1'-trimethyleneferrocene shows some stereospecificity, affording two diastereoisomeric alcohols. Both contain ν (OH) bands suggesting interaction of the hydroxyl function with the metal atom. The isomer obtained in highest yield has m.p. 122°, and structure (214), with the two C₅ rings deviating from coplanarity by 9°, was determined²⁵⁴.

Ferrocene derivatives containing more than one metallocene nucleus have been described by several workers. The structure of [1.1.1] ferrocenophane (215), obtained from FeCl₂ and the dianion from dicyclopentadienylmethane, confirms the proposed structure²⁵⁵. The actual geometry is a hybrid of several idealised conformational structures of a large ring formed by the three linked ferrocenyl nuclei. It appears that an important factor controlling the molecular conformation of [1ⁿ] ferrocenophanes is the minimisation of intramolecular nonbonded hydrogen contacts. A trinuclear ferrocene derivative of formula Fc₃C(C₄H₇O) has structure (216). In the two independent molecules in the unit cell, the relative conformations of the two C₅ rings range from 1.8 to 27.4^o ²⁵⁶.

The structure of 1, 1'-dimethylferricinium triiodide shows that the rings are almost eclipsed (2.2°) , as are the two methyl groups. Consequently, there is some steric interaction

between the two methyl groups, reflected in a ring tilt of 6.6° . The inter-ring distance (3.39 Å) is longer than in ferrocene (3.32 Å)²⁵⁷.

Miscellaneous. Preliminary details (e.g. unit all dimensions, space groups, etc.) have been reported for the following compounds: $Fe(CO)(C_4H_6)_2^{258}$, cis-RuCl₂(CO)₂(AsEtPh₂)₂²⁵⁹, [Co(C₅H₅)₂]₂MCl₄ (M = Zn, Co)²⁶⁰, and [Ir(OMe)(C₈H₁₂)]₂²⁶¹.

REFERENCES

- 1 B.P. Biryukov and Y.T. Struchkov, Uspek. Khim., 39 (1970) 1672; Russ. Chem. Rev., 39 (1970) 789.
- 2 M.R. Churchill, Perspectives Struct. Chem., 3 (1970) 91.
- 3 E.L. Amma, Advan. Chem. Ser. (Amer. Chem. Soc.), 98 (1971) 120.
- 4 O. Kennard and D.G. Watson (Eds.), Molecular Structures and Dimensions, Oosthoek, Utrecht. Vol. 2, Bibliography 1935–1969, Complexes and organometallic structures, 1970; vol. 3, Bibliography 1969–1971, Organic and organometallic crystal structures, 1971.
- 5 P.T. Greene and R.F. Bryan, J. Chem. Soc. (A), (1971) 1559.
- 6 H. Vahrenkamp, Chem. Ber., 104 (1971) 449.
- 7 R. Mason, G.A. Rusholme, W. Beck, H. Englemann, K. Joos, B. Lindenberg and H.S. Smedal, Chem. Commun., (1971) 496.
- 8 C.K. Thomas and J.A. Stanko, Inorg. Chem., 10 (1971) 566.
- 9 R.B. Petersen, J.J. Stezowski, C. Wan, J.M. Burlitch and R.E. Hughes, J. Amer. Chem. Soc., 93 (1971) 3532.
- 10 T.L. Blundell and H.M. Powell, J. Chem. Soc. (A), (1971) 1685.
- 11 W. Clegg and P.J. Wheatley, J. Chem. Soc. (A), (1971) 3572.
- 12 T. Takano and Y. Sasaki, Bull. Chem. Soc. Japan, 44 (1971) 431.
- 13 P.D. Cradwick, J. Organometal. Chem., 27 (1971) 251.
- 14 M.R. Churchill, J. Wormald, J. Knight and M.J. Mays, J. Amer. Chem. Soc., 93 (1971) 3073.
- 15 M.D. Brice, R.J. Dellaca, B.R. Penfold and J.L. Spencer, Chem. Commun., (1971) 72.
- 16 R.J. Dellaca and B.R. Penfold, Inorg. Chem., 10 (1971) 1269.
- 17 K.W. Muir, J. Chem. Soc. (A), (1971) 2663.
- 18 M.J. Bennett and K.A. Simpson, J. Amer. Chem. Soc., 93 (1971) 7156.
- 19 R.C. Edmondson, D.S. Field and M.J. Newlands, Can. J. Chem., 49 (1971) 618.
- 20 R. Restivo and R.F. Bryan, J. Chem. Soc. (A), (1971) 3364.
- 21 J. Howard and P. Woodward, J. Chem. Soc. (A), (1971) 3648.
- 22 B.P. Bir'yukov, E.A. Kukhtenkova, Y.T. Struchkov, K.N. Anisimov, N.E. Kolobova and V.I. Khandozhko, J. Organometal. Chem., 27 (1971) 337.
- 23 F.P. Boer and J.J. Flynn, J. Amer. Chem. Soc., 93 (1971) 6495.
- 24 R.J. Cross and F. Glockling, J. Chem. Soc., (1965) 5422.
- 25 R.J.D. Gee and H.M. Powell, J. Chem. Soc. (A), (1971) 1956.
- 26 Trinh-Toan and L.F. Dahl, J. Amer. Chem. Soc., 93 (1971) 2654.
- 27 W.R. Cullen, D.J. Patmore, J.R. Sams, M.J. Newlands and L.K. Thompson, Chem. Commun., (1971) 952.
- 28 A.S. Foust and L.F. Dahl, J. Amer. Chem. Soc., 92 (1970) 7337.
- 29 D.L. Stevenson, C.H. Wei and L.F. Dahl, J. Amer. Chem. Soc., 93 (1971) 6027.
- 30 C.E. Strouse and L.F. Dahl, J. Amer. Chem. Soc., 93 (1971) 6032.
- 31 S. Otsuka, T. Yoshida and N. Kamijo, unpublished results quoted in: M. Sorai, A. Kosaki, H. Suga, S. Seki, T. Yoshida and S. Otsuka, Bull. Chem. Soc. Japan, 44 (1971) 2364.
- 32 N.G. Connelly and L.F. Dahl, J. Amer. Chem. Soc., 92 (1970) 7472.
- 33 N.G. Connelly and L.F. Dahl, J. Amer. Chem. Soc., 92 (1970) 7480.
- 34 J.W. Cox and H.W. Baird, unpublished results quoted in ref. 33, footnote 20.
- 35 P.J. Vergamini, H. Vahrenkamp and L.F. Dahl, J. Amer. Chem. Soc., 93 (1971) 6326.
- 36 J.M. Coleman, A.J. Wojcicki, P.J. Pollick and L.F. Dahl, Inorg. Chem., 6 (1967) 1236.

- 37 P.J. Vergamini, H. Vahrenkamp and L.F. Dahl, J. Amer. Chem. Soc., 93 (1971) 6327.
- 38 L.B. Handy, J.K. Ruff and L.F. Dahl, J. Amer. Chem. Soc., 92 (1970) 7312.
- 39 N.I. Gapotchenko, N.V. Alekseev, N.E. Kolobova, K.N. Anisimov, I.A. Ronova and A.A. Johansson, J. Organometal. Chem., 35 (1972) 319.
- 40 L.B. Handy, J.K. Ruff and L.F. Dahl, J. Amer. Chem. Soc., 92 (1970) 7327.
- 41 J.K. Ruff, R.P. White and L.F. Dahl, J. Amer. Chem. Soc., 93 (1971) 2159.
- 42 G. Raper and W.S. McDonald, J. Chem. Soc. (A), (1971) 3430.
- 43 C.J. Gilmore and P. Woodward, J. Chem. Soc. (A), (1971) 3453.
- 44 M.R. Churchill and J. Wormald, J. Amer. Chem. Soc., 93 (1971) 5670.
- 45 J.G. Bullitt and F.A. Cotton, Inorg. Chim. Acta, 5 (1971) 406.
- 46 M.R. Churchill and M.V. Veidis, J. Chem. Soc. (A), (1971) 2995.
- 47 M.R. Churchill and M.V. Veidis, J. Chem. Soc. (A), (1971) 2170.
- 48 V.G. Albano, P.L. Bellon and M. Sansoni, J. Chem. Soc. (A), (1971) 678.
- 49 N.K. Hota, H.A. Patel, A.J. Carty, M. Mathew and G.J. Palenik, J. Organometal. Chem., 32 (1971) C55.
- 50 M.R. Churchill, F.R. Scholer and J. Wormald, J. Organometal. Chem., 28 (1971) C21.
- 51 A. Cox and P. Woodward, J. Chem. Soc. (A), (1971) 3599.
- 52 S.A. Bezman, M.R. Churchill, J.A. Osborn and J. Wormald, J. Amer. Chem. Soc., 93 (1971) 2063.
- 53 P.L. Bellon, F. Cariati, M. Manassero, L. Naldini and M. Sansoni, Chem. Commun., (1971) 1423.
- 54 M. McPartlin, R. Mason and L. Malatesta, Chem. Commun., (1969) 334.
- 55 V.G. Albano, P.L. Bellon, M. Manassero and M. Sansoni, Chem. Commun., (1970) 1210.
- 56 I.W. Bassi, G. Allegra, R. Scordamaglia and G. Chioccola, J. Amer. Chem. Soc., 93 (1971) 3787.
- 57 G.R. Davies, J.A.J. Jarvis, B.T. Kilbourn and A.J.P. Pioli, Chem. Commun., (1971) 677.
- 58 G.R. Davies, J.A.J. Jarvis and B.T. Kilbourn, Chem. Commun., (1971) 1511.
- 59 V. Kocman, J.C. Rucklidge, R.J. O'Brien and W. Santo, Chem. Commun., (1971) 1340.
- 60 F. Huq, W. Mowat, A.C. Skapski and G. Wilkinson, Chem. Commun., (1971) 1477.
- 61 F. Huq, W. Mowat, A. Shortland, A.C. Skapski and G. Wilkinson, Chem. Commun., (1971) 1079.
- 62 J. Krausse and G. Schödl, J. Organometal. Chem., 27 (1971) 59.
- 63 J.J. Daly, F. Sanz, R.P.A. Sneeden and H.H. Zeiss, Chem. Commun., (1971) 243.
- 64 H.M. Seip and R. Seip, Acta Chem. Scand., 24 (1970) 3431.
- 65 U.A. Gregory, S.D. Ibekwe, B.T. Kilbourn and D.R. Russell, J. Chem. Soc. (A), (1971) 1118.
- 66 N.A. Bailey, B.M. Higson and E.D. McKenzie, Inorg. Nucl. Chem. Letters, 7 (1971) 591.
- 67 M.R. Churchill and M.V. Veidis, J. Chem. Soc. (A), (1971) 3463.
- 68 W.H. Baddley, C. Pannattoni, G. Bandoli, D.A. Clemente and U. Belluco, J. Amer. Chem. Soc., 93 (1971) 5590.
- 69 R.N. Hargreaves and M.R. Truter, J. Chem. Soc. (A), (1971) 90.
- 70 G.W. Adamson, J.C.J. Bart and J.J. Daly, J. Chem. Soc. (A), (1971) 2616.
- 71 C.J. Gilmore and P. Woodward, Chem. Commun., (1971) 1233.
- 72 J.S. Ricci and J.A. Ibers, J. Organometal. Chem., 27 (1971) 261.
- 73 T. Blackmore, M.I. Bruce, F.G.A. Stone, R.E. Davis and A. Garza, Chem. Commun., (1971) 852.
- 74 N.A. Bailey, S.E. Hull, R.W. Jotham and S.F.A. Kettle, Chem. Commun., (1971) 282.
- 75 D.M. Barlex, J.A. Evans, R.D.W. Kemmitt and D.R. Russell, Chem. Commun., (1971) 331.
- 76 A. Bright, J.F. Malone, J.K. Nicholson, J. Powell and B.L. Shaw, Chem. Commun., (1971) 712.
- 77 J.A. Evans, D.R. Russell, A. Bright and B.L. Shaw, Chem. Commun., (1971) 841.
- 78 A.C. Cope and R.W. Siekman, J. Amer. Chem. Soc., 87 (1965) 3272.
- 79 J.P. Kleiman and M. Dubeck, J. Amer. Chem. Soc., 85 (1963) 1544.
- 80 A.R.M. Craik, G.R. Knox, P.L. Pauson, R.J. Hoare and O.S. Mills, Chem. Commun., (1971) 168.
- 81 M.I. Bruce, B.L. Goodall, M.Z. Iqbal, F.G.A. Stone, R.J. Doedens and R.G. Little, Chem. Commun., (1971) 1595.
- 82 G. Bombieri, L. Caglioti, L. Cattalini, E. Forsellini, P. Gasparrini, R. Graziani and P.A. Vigato, Chem. Commun., (1971) 1415.
- 83 J.M. Guss and R. Mason, Chem. Commun., (1971) 58.
- 84 I.S. Kolomnikov, T.S. Lobeeva, V.V. Gorbachevskaya, G.G. Aleksandrov, Y.T. Struchkov and M.E. Vol'pin, Chem. Commun., (1971) 972.

- 85 M.A. Bennett, G.B. Robertson, I.B. Tomkins and P.O. Whimp, Chem. Commun., (1971) 341.
- 86 M.A. Bennett, G.B. Robertson, I.B. Tomkins and P.O. Whimp, J. Organometal. Chem., 32 (1971) C19.
- 87 M.A. Bennett, G.B. Robertson, R. Watt and P.O. Whimp, Chem. Commun., (1971) 752.
- 88 M.A. Bennett, K. Hoskins, W.R. Kneen, R.S. Nyholm, P.B. Hitchcock, R. Mason, G.B. Robertson and A.D.C. Towl, J. Amer. Chem. Soc., 93 (1971) 4591.
- 89 M.A. Bennett, K. Hoskins, W.R. Kneen, R.S. Nyholm, R. Mason, P.B. Hitchcock, G.B. Robertson and A.D.C. Towl, J. Amer. Chem. Soc., 93 (1971) 4592.
- 90 G. Huttner and O.S. Mills, J. Organometal. Chem., 29 (1971) 275.
- 91 D. Bright and O.S. Mills, J. Chem. Soc. (A), (1971) 1979.
- 92 J.A. Evans and D.R. Russell, Chem. Commun., (1971) 197.
- 93 C. Nave and M.R. Truter, Chem. Commun., (1971) 1253.
- 94 G.G. Aleksandrov and Y.T. Struchkov, Zh. Strukt. Khim., 11 (1970) 708.
- 95 G.G. Aleksandrov and Y.T. Struchkov, Zh. Strukt. Khim., 11 (1970) 1094.
- 96 M.R. Churchill and S.A. Bezman, J. Organometal. Chem., 31 (1971) C40.
- 97 J.A.J. Jarvis, B.T. Kilbourn and P.G. Owston, Acta Cryst., B27 (1971) 366.
- 98 D.P. Mellor and J.A. Wunderlich, Acta Cryst., 7 (1954) 136; 8 (1955) 57; G.B. Bokii and G.A. Kukina, Zh. Strukt. Khim., 5 (1965) 706; W.C. Hamilton, K.A. Klanderman and R. Spratley, Acta Cryst., A25 (1969) S172; M. Black, R.H.B. Mais and P.G. Owston, Acta Cryst., B25 (1969) 1753.
- 99 V.C. Adam, J.A.J. Jarvis, B.T. Kilbourn and P.G. Owston, Chem. Commun., (1971) 467.
- 100 R. Spagna and L. Zambonelli, J. Chem. Soc. (A), (1971) 2544.
- 101 E. Benedetti, P. Corradini and C. Pedone, J. Organometal. Chem., 18 (1959) 203.
- 102 C. Pedone and E. Benedetti, J. Organometal. Chem., 29 (1971) 443.
- 103 S. Merlino, R. Lazzaroni and G. Montagnoli, J. Organometal. Chem., 30 (1971) C93.
- 104 P. Porta, J. Chem. Soc. (A), (1971) 1217.
- 105 P. Ganis, U. Lepore and E. Martuscelli, J. Phys. Chem., 74 (1970) 2439.
- 106 O. Ermer, H. Eser and J.D. Dunitz, Helv. Chim. Acta, 54 (1971) 2469.
- 107 P. Ganis, V. Giuliano and U. Lepore, Tetrahedron Letters, (1971) 765.
- 108 C.S. Gibbons and J. Trotter, J. Chem. Soc. (A), (1971) 2058.
- 109 F.H. Allen and D. Rogers, J. Chem. Soc. (B), (1971) 257.
- 110 E.A. Hall Griffith and E.L. Amma, J. Amer. Chem. Soc., 93 (1971) 3167.
- 111 C.A. Maier and I.C. Paul, Chem. Commun., (1971) 181.
- 112 F.G.A. Stone, Pure Appl. Chem., 30 (1972) 551.
- 113 T.G. Hewitt and J.J. DeBoer, J. Chem. Soc. (A), (1971) 817.
- 114 M. Kadonaga, N. Yasuoka and N. Kasai, Chem. Commun., (1971) 1597.
- 115 G.B. Robertson and P.O. Whimp, J. Organometal. Chem., 32 (1971) C69.
- 116 M.A. Bennett, G.B. Robertson, P.O. Whimp and T. Yoshida, J. Amer. Chem. Soc., 93 (1971) 3797.
- 117 J.P. Visser, A.J. Schipperijn, J. Lukas, D. Bright and J.J. de Boer, Chem. Commun., (1971) 1266.
- 118 J.N. Francis, A. McAdam and J.A. Ibers, J. Organometal. Chem., 29 (1971) 131.
- 119 A. McAdam, J.N. Francis and J.A. Ibers, J. Organometal. Chem., 29 (1971) 149.
- 120 J.S. Ricci and J.A. Ibers, J. Amer. Chem. Soc., 93 (1971) 2391.
- 121 R. Countryman and B.R. Penfold, Chem. Commun., (1971) 1598.
- 122 J. Clemens, R.E. Davis, M. Green, J.D. Oliver and F.G.A. Stone, Chem. Commun., (1971) 1095.
- 123 P.-T. Cheng, C.D. Cook, S.C. Nyburg and K.Y. Wan, Can. J. Chem., 49 (1971) 3772.
- 124 M.S. Weininger, I.F. Taylor and E.L. Amma, Chem. Commun., (1971) 1172.
- 125 M.J. Bennett and P.B. Donaldson, J. Amer. Chem. Soc., 93 (1971) 3307.
- 126 R.S. Dickson, J.A. Ibers, S. Otsuka and Y. Tatsumo, J. Amer. Chem. Soc., 93 (1971) 4636.
- 127 R.D. Gillard, M. Keeton, R. Mason, M.F. Pilbrow and D.R. Russell, J. Organometal. Chem., 33 (1971) 247.
- 128 E. Müller, E. Langer, H. Jäkle, H. Muhm, W. Hoppe, R. Graziani, A. Gieren and F. Brandl, Z. Naturforsch. B, 26 (1971) 305.
- 129 J.T. Mague, J. Amer. Chem. Soc., 93 (1971) 3550.
- 130 F.A. Cotton and J.R. Pipal, J. Amer. Chem. Soc., 93 (1971) 5441.

- 131 G. Pantíní, P. Racanelli, A. Immirzi and L. Porri, J. Organometal. Chem., 33 (1971) C17.
- 132 T.A. Broadbent and G.E. Pringle, J. Inorg. Nucl. Chem., 33 (1971) 2009.
- 133 Y. Kitano, T. Kajimoto, M. Kashiwagi and Y. Kinoshita, J. Organometal. Chem., 33 (1971) 123.
- 134 M. Zocchi, G. Tieghi and A. Albinati, J. Organometal. Chem., 33 (1971) C47.
- 135 S. Koda, A. Takenaka and T. Watanabe, Bull. Chem. Soc. Japan, 44 (1971) 653.
- 136 I.S. Astakhova and Y.T. Struchkov, Zh. Strukt. Khim., 11 (1970) 472.
- 137 K. Nicholas, L.S. Bray, R.E. Davis and R. Pettit, Chem. Commun., (1971) 608.
- 138 F.A. Cotton, B.G. DeBoer and T.J. Marks, J. Amer. Chem. Soc., 93 (1971) 5069.
- 139 C. Krüger and Y.-H. Tsai, Angew. Chem., 83 (1971) 250; Angew. Chem. Intern. Edit., 10 (1971) 261; J. Organometal. Chem., 33 (1971) 59.
- 140 M. Green, S. Tolson, J. Weaver, D.C. Wood and P. Woodward, Chem. Commun., (1971) 222; J. Weaver and P. Woodward, J. Chem. Soc. (A), (1971) 3521.
- 141 F.A. Cotton, M.D. LaPrade, B.F.G. Johnson and J. Lewis, J. Amer. Chem. Soc., 93 (1971) 4626.
- 142 M.G. Waite and G.A. Sim, J. Chem. Soc. (A), (1971) 1009.
- 143 R. Allmann, Angew. Chem., 82 (1970) 982; Angew. Chem. Intern. Edit., 9 (1970) 958.
- 144 G. Maglio, A. Musco, R. Palumbo and A. Sirigu, Chem. Commun., (1971) 100.
- 145 P. Janse van Vuuren, R.J. Fletterick, J. Meinwald and R.E. Hughes, J. Amer. Chem. Soc., 93 (1971) 4394.
- 146 M.J. Barrow, O.S. Mills, F. Haque and P.L. Pauson, Chem. Commun., (1971) 1239.
- 147 M.J. Barrow and O.S. Mills, Chem. Commun., (1971) 119.
- 148 R.M. Tuggle and D.L. Weaver, Inorg. Chem., 10 (1971) 1504.
- 149 R.M. Tuggle and D.L. Weaver, Inorg. Chem., 10 (1971) 2599.
- 150 R.E. Davis, H.D. Simpson, N. Grice and R. Pettit, J. Amer. Chem. Soc., 93 (1971) 6688.
- 151 J.L. Calderon, F.A. Cotton, B.G. DeBoer and J. Takats, J. Amer. Chem. Soc., 93 (1971) 3592.
- 152 V.I. Kulishov, N.G. Bokii and Y.T. Struchkov, Zh. Strukt. Khim., 11 (1970) 700.
- 153 M.A. Bush and G.A. Sim, J. Chem. Soc. (A), (1971) 2225.
- 154 I.A. Ronova, N.V. Alekseev, N.I. Gapotchenko and Y.T. Struchkov, Zh. Strukt. Khim., 11 (1970) 584.
- 155 B.R. Davis and I. Bernal, J. Organometal. Chem., 30 (1971) 75.
- 156 G.G. Aleksandrov and Y.T. Struchkov, Zh. Strukt. Khim., 11 (1970) 479; G.M. Larin, V.T. Kalinnikov, G.G. Aleksandrov, Y.T. Struchkov, A.A. Pasynskii and N.E. Kolobova, J. Organometal. Chem., 27 (1971) 53.
- 157 L.J. Guggenberger and F.N. Tebbe, J. Amer. Chem. Soc., 93 (1971) 5924.
- 158 R. Hoxmeier, B. Deubzer and H.D. Kaesz, J. Amer. Chem. Soc., 93 (1971) 536.
- 159 L.Y.Y. Chan and F.W.B. Einstein, Acta Cryst., B26 (1970) 1899.
- 160 J.L. Calderon, F.A. Cotton, B.G. DeBoer and N. Martinez, Chem. Commun., (1971) 1476.
- 161 R.H. Fenn and J.H. Cross, J. Chem. Soc. (A), (1971) 3312.
- 162 M.A. Bush, A.D.U. Hardy, L. Manojlovic-Muir and G.A. Sim, J. Chem. Soc. (A), (1971) 1003.
- 163 A.T. McPhail, G.R. Knox, C.G. Robertson and G.A. Sim, J. Chem. Soc. (A), (1971) 205.
- 164 A.S. Foust, J.K. Hoyano and W.A.G. Graham, J. Organometal. Chem., 32 (1971) C65.
- 165 A. Miyake and A. Kanai, Angew. Chem., 83 (1971) 851; Angew. Chem. Intern. Edit., 10 (1971) 801.
- 166 K.K. Cheung, R.J. Cross, K.P. Forrest, R. Wardle and M. Mercer, Chem. Commun., (1971) 875.
- 167 J.H. Burns and P.G. Laubereau, Inorg. Chem., 10 (1971) 2789.
- 168 M. Cesari, U. Pedretti, A. Zazzetta, G. Lugli and W. Marconi, Inorg. Chim. Acta, 5 (1971) 439.
- 169 K. Stöckel, F. Sondheimer, T.A. Clarke, M. Guss and R. Mason, J. Amer. Chem. Soc., 93 (1971) 2571.
- 170 M.J. Barrow and O.S. Mills, Chem. Commun., (1971) 220.
- 171 M.J. Barrow and O.S. Mills, J. Chem. Soc. (A), (1971) 1982.
- 172 Y. Dusausoy, R. Guilard, J. Protas and J. Tirouflet, C.R. Acad. Sci. Paris, Sér. C, 272 (1971) 2134.
- 173 G. Huttner and B. Krieg, Angew. Chem., 83 (1971) 541; Angew. Chem. Intern. Edit., 10 (1971) 512.
- 174 G. Huttner, S. Lange and E.O. Fischer, Angew. Chem., 83 (1971) 579; Angew. Chem. Intern. Edit., 10 (1971) 556.

- 175 F.A. Cotton, B.G. De Boer and M.D. LaPrade, Proc. 23rd Intern. Congr. Pure Appl. Chem., Boston, August 1971, vol. 6, p. 1.
- 176 K.O. Hodgson and K.N. Raymond, unpublished results quoted in F. Mares, K.O. Hodgson and A. Streitwieser, J. Organometal. Chem., 28 (1971) C24.
- 177 K.O. Hodgson, D. Dempf and K.N. Raymond, Chem. Commun., (1971) 1592.
- 178 P.A. Kroon and R.B. Helmholdt, J. Organometal. Chem., 25 (1970) 451.
- 179 D. St. Clair, A. Zalkin and D.H. Templeton, Inorg. Chem., 10 (1971) 2587.
- 180 M.R. Churchill and K. Gold, Inorg. Chem., 10 (1971) 1928.
- 181 F.H. Cano and D.W.J. Cruickshank, Chem. Commun., (1971) 1617.
- 182 B. Jovanovic, L. Manojlovic-Muir and K.W. Muir, J. Organometal. Chem., 33 (1971) C75.
- 183 E.O. Fischer, E. Winkler, C.G. Kreiter, G. Huttner and B. Krieg, Angew. Chem., 83 (1971) 1021; Angew. Chem. Intern. Edit., 10 (1971) 923.
- 184 D.J. Cardin, B. Cetinkaya, M.F. Lappert, L. Manojlovic-Muir and K.W. Muir, Chem. Commun., (1971) 400.
- 185 W.M. Butler and J.H. Enemark, Inorg. Chem., 10 (1971) 2416.
- 186 J. Miller, A.L. Balch and J.H. Enemark, J. Amer. Chem. Soc., 93 (1971) 4613.
- 187 N.A. Bailey, R.D. Gillard, M. Keeton, R. Mason and D.R. Russell, Chem. Commun., (1966) 396.
- 188 M. Keeton, R. Mason and D.R. Russell, J. Organometal. Chem., 33 (1971) 259.
- 189 S.Z. Goldberg, E.N. Duesler and K.N. Raymond, Chem. Commun., (1971) 826.
- 190 B.L. Barnett and C. Krüger, Angew. Chem., 83 (1971) 969; Angew. Chem., Intern. Edit., 10 (1971) 910.
- 191 A. Griffiths, J. Cryst. Molec. Struct., 1 (1971) 75.
- 192 M.J. Barrow and O.S. Mills, J. Chem. Soc. (A), (1971) 864.
- 193 K. Ogawa, A. Torii, H. Kobayashi-Tamura, T. Watanabe, T. Yoshida and S. Otsuka, Chem. Commun., (1971) 991.
- 194 R.A. Smith, D.P. Madden, A.J. Carty and G.J. Palenik, Chem. Commun., (1971) 427.
- 195 F.W.B. Einstein, A.B. Gilchrist, G.W. Rayner Canham and D. Sutton, J. Amer. Chem. Soc., 93 (1971) 1826.
- 196 G. Huttner and S. Schelle, J. Cryst. Molec. Struct., 1 (1971) 69.
- 197 J.-L. Birck, Y. Le Cas, N. Baffier, J.-J. Legendre and M. Huber, C.R. Acad. Sci. Paris, Sér. C, 273 (1971) 880.
- 198 D.M. Bridges, G.C. Holywell, D.W.H. Rankin and J.M. Freeman, J. Organometal. Chem., 32 (1971) 87.
- 199 A. Almenningen, B. Andersen and E.E. Astrup, Acta Chem. Scand., 24 (1970) 1579.
- 200 M.A. Bennett, G.B. Robertson, T.W. Turney and P.O. Whimp, Chem. Commun., (1971) 762.
- 201 K.K. Cheung, T.F. Lai and K.S. Mok, J. Chem. Soc. (A), (1971) 1644.
- 202 L.R. Nassimbeni, Inorg. Nucl. Chem. Letters, 7 (1971) 187.
- 203 L.R. Nassimbeni, Inorg. Nucl. Chem. Letters, 7 (1971) 909.
- 204 M.G.B. Drew, I.B. Tomkins and R. Colton, Aust. J. Chem., 23 (1970) 2517.
- 205 M.G.B. Drew, A.W. Johans, A.P. Wolters and I.B. Tomkins, Chem. Commun., (1971) 819.
- 206 G.B. Robertson, P.O. Whimp, R. Colton and C.J. Rix, Chem. Commun., (1971) 573.
- 207 J.-J. Legendre, C. Girard and M. Huber, Bull. Soc. Chim. France, (1971) 1998.
- 208 P.S. Elmes, P. Leverett and B.O. West, Chem. Commun., (1971) 747.
- 209 D.D. Titus, A.A. Orio, R.E. Marsh and H.B. Gray, Chem. Commun., (1971) 322.
- 210 G.R. Clark, C.A. Reed, W.R. Roper, B.W. Skelton and T.N. Waters, Chem. Commun., (1971) 758.
- 211 J.P. Crow, W.R. Cullen, F.L. Hou, L.Y.Y. Chan and F.W.B. Einstein, Chem. Commun., (1971) 1229.
- 212 W. Harrison and J. Trotter, J. Chem. Soc. (A), 1542.
- 213 F.W.B. Einstein, A.-M. Pilotti and R. Restivo, Inorg. Chem., 10 (1971) 1947.
- 214 P.J. Roberts and J. Trotter, J. Chem. Soc. (A), (1971) 1479.
- 215 F.W.B. Einstein and R. Restivo, Inorg. Chim. Acta, 5 (1971) 501.
- 216 F.W.B. Einstein and R.D.G. Jones, J. Chem. Soc. (A), (1971) 3359.
- 217 W. Harrison and J. Trotter, J. Chem. Soc. (A), (1971) 1607.
- 218 F.W.B. Einstein and C.R.S.M. Hampton, Can. J. Chem., 49 (1971) 1901.

- 219 W.R. Cullen, I.W. Nowell, P.J. Roberts, J. Trotter and J.E.H. Ward, Chem. Commun., (1971) 560.
- 220 P.J. Roberts and J. Trotter, J. Chem. Soc. (A), (1971) 1501.
- 221 I.W. Nowell and J. Trotter, J. Chem. Soc. (A), (1971) 2922.
- 222 V.G. Albano, P.L. Bellon and G. Ciani, J. Organometal. Chem., 31 (1971) 75.
- 223 G. Thiele and G. Liehr, Chem. Ber., 104 (1971) 1877.
- 224 A. Kutoglu and H. Köpf, J. Organometal. Chem., 25 (1970) 455.
- 225 E.F. Epstein, I. Bernal and H. Köpf, J. Organometal. Chem., 26 (1971) 229.
- 226 B.R. Davis, I. Bernal and H. Köpf, Angew. Chem., 83 (1971) 1018; Angew. Chem. Intern. Edit., 10 (1971) 921.
- 227 T.S. Cameron, C.K. Prout, G.V. Rees, M.L.H. Green, K.K. Joshi, G.R. Davies, B.T. Kilbourn, P.S. Braterman and V.A. Wilson, *Chem. Commun.*, (1971) 14.
- 228 G.R. Davies and B.T. Kilbourn, J. Chem. Soc. (A), (1971) 87.
- 229 T.S. Cameron and C.K. Prout, Chem. Commun., (1971) 161.
- 230 W.E. Douglas, M.L.H. Green, C.K. Prout and G.V. Rees, Chem. Commun., (1971) 896.
- 231 M.R. Churchill and J. Wormald, Inorg. Chem., 10 (1971) 572.
- 232 M.R. Churchill and J. Wormald, J. Amer. Chem. Soc., 93 (1971) 354.
- 233 M.I. Bruce and A.D. Redhouse, J. Organometal. Chem., 30 (1971) C78.
- 234 B.R. Davies and J.A. Ibers, Inorg. Chem., 10 (1971) 578.
- 235 T. Uchida, Y. Uchida, M. Hidai and T. Kodama, Bull. Chem. Soc. Japan, 45 (1971) 2883.
- 236 P.W. Jolly, K. Jonas, C. Krüger and Y.-H. Tsay, J. Organometal. Chem., 33 (1971) 109.
- 237 C.G. Pierpont and R. Eisenberg, J. Amer. Chem. Soc., 93 (1971) 4905.
- 238 C.G. Pierpont, A. Pucci and R. Eisenberg, J. Amer. Chem. Soc., 93 (1971) 3050.
- 239 J.M. Waters and K.R. Whittle, Chem. Commun., (1971) 518.
- 240 C.G. Pierpont, D.G. Van der Veer, W. Durland and R. Eisenberg, J. Amer. Chem. Soc., 92 (1970) 4760.
- 241 D.M.P. Mingos and J.A. Ibers, Inorg. Chem., 10 (1971) 1479.
- 242 D.M.P. Mingos and J.A. Ibers, Inorg. Chem., 10 (1971) 1035.
- 243 D.M.P. Mingos, W.T. Robinson and J.A. Ibers, Inorg. Chem., 10 (1971) 1043.
- 244 J.H. Enemark, Inorg. Chem., 10 (1971) 1952.
- 245 V.G. Albano, P. Bellon and M. Sansoni, J. Chem. Soc. (A), (1971) 2420.
- 246 S. Jagner, Acta Chem. Scand., 24 (1970) 3485.
- 247 C.E. Strouse and B.I. Swanson, Chem. Commun., (1971) 55.
- 248 R. Bau, I.H. Sabherwal and A.B. Burg, J. Amer. Chem. Soc., 93 (1971) 4926.
- 249 C.S. Pratt, B.A. Coyle and J.A. Ibers, J. Chem. Soc. (A), (1971) 2146.
- 250 R. Weist and R. Weiss, J. Organometal. Chem., 30 (1971) C33.
- 251 T.E. Borovyak, V.E. Shklover, A.I. Gusev, S.P. Gubin, A.A. Koridze and Y.T. Struchkov, Zh. Strukt. Khim., 11 (1970) 1087.
- 252 C.S. Gibbons and J. Trotter, J. Chem. Soc. (A), (1971) 2659.
- 253 L.H. Hall and G.M. Brown, Acta Cryst., B27 (1971) 81.
- 254 C. Lecomte, Y. Dusausoy, C. Moise, J. Protas and J. Tirouflet, C.R. Acad. Sci. Paris, Sér. C, 273 (1971) 952.
- 255 S.J. Lippard and G. Martin, J. Amer. Chem. Soc., 92 (1970) 7291.
- 256 F. Hanic, J. Sevcik and E.L. McGandy, Chem. Zvesti, 24 (1970) 81.
- 257 J.W. Bats, J.J. de Boer and D. Bright, Inorg. Chim. Acta, 5 (1971) 605.
- 258 See ref. 139; a footnote adds that the full structure has been reported by: R.E. Davies, G.L. Cupper and H.D. Simpson, Amer. Cryst. Assoc., Summer Meeting, Ottawa 1970, Abstr. No. N4.
- 259 S. Vasudevan and K.N. Kuchela, Current Sci., 40 (1971) 265.
- 260 J.R. Günter, G. Mattmann and H. Werner, J, Organometal. Chem., 25 (1970) 475.
- 261 D. Tabrizi and G. Pannetier, J. Less-Common Metals, 23 (1971) 443.
- 262 J. Halpern, E. Kimura, J. Molin-Case and C.S. Wong, Chem. Commun., (1971) 1207.
- 263 M.I. Davis and C.S. Speed, J. Organometal. Chem., 21 (1970) 401.
- 264 C. Krüger, J. Organometal. Chem., 22 (1970) 697.
- 265 A.R. Luxmoore and M.R. Truter, Acta Cryst., 15 (1962) 1117.
- 266 C. Pedone and A. Sirigu, Inorg. Chem., 7 (1968) 2614.

ORGANOMETALLIC STRUCTURES-TRANSITION METALS

- 267 P. Racanelli, G. Pantini, A. Immirzi, G. Allegra and L. Porri, Chem. Commun., (1969) 361.
- 268 P.B. Hitchcock, M. McPartlin and R. Mason, Chem. Commun., (1969) 1367.
- 269 T. Kashiwagi, N. Yasuoka, N. Kasai and M. Kukudo, Chem. Commun., (1969) 317.
- 270 J.A. McGinnety, N.C. Payne and J.A. Ibers, J. Amer. Chem. Soc., 91 (1969) 6301.
- 271 K.W. Muir and J.A. Ibers, J. Organometal. Chem., 18 (1969) 175.
- 272 J.A. McGinnety and J.A. Ibers, Chem. Commun., (1968) 235.
- 273 S.J. La Placa and J.A. Ibers, J. Amer. Chem. Soc., 87 (1965) 2581.
- 274 J.A. McGinnety, R.J. Doedens and J.A. Ibers, Inorg. Chem., 6 (1967) 2243.
- 275 C.D. Cook, C.H. Koo, S.C. Nyburg and M.T. Shiomi, Chem. Commun., (1967) 426; H. Dreissig and H. Dietrich, Acta Cryst., B24 (1968) 108.
- 276 J.K. Stalick and J.A. Ibers, J. Amer. Chem. Soc., 92 (1970) 5333.
- 277 T. Kashiwagi, N. Yasuoka, T. Ueki, N. Kasai, M. Kakudo, S. Takahashi and N. Hagihara, Bull. Chem. Soc. Japan, 41 (1968) 296.
- 278 C. Panattoni, R. Graziani, G. Bandoli, D.A. Clemente and U. Belluco, J. Chem. Soc. (B), (1970) 371.
- 279 C. Panattoni, G. Bombieri, U. Belluco and W.H. Baddley, J. Amer. Chem. Soc., 90 (1968) 798.
- 280 J.O. Glanville, J.M. Stewart and S.O. Grim, J. Organometal. Chem., 7 (1967) P9.
- 281 R. Mason and A.I.M. Rae, J. Chem. Soc., (1970) 1767.
- 282 C.D. Cook, P.-T. Cheng and S.C. Nyburg, J. Amer. Chem. Soc., 91 (1969) 2123.
- 283 T. Kashiwagi, N. Yasuoka, N. Kasai, M. Kakudo, S. Takahashi and N. Hagihara, *Chem. Commun.*, (1969) 743.
- 284 J.H. Enemark, B.R. Davis, J.A. McGinnety and J.A. Ibers, Chem. Commun., (1968) 96.
- 285 B.R. Davis, N.C. Payne and J.A. Ibers, J. Amer. Chem. Soc., 91 (1969) 1240; B.R. Davis, N.C. Payne and J.A. Ibers, Inorg. Chem., 8 (1969) 2719.
- 286 F. Bottomley and S.C. Nyburg, Acta Cryst., 24B (1968) 1289.
- 287 F. Bottomley and S.C. Nyburg, Chem. Commun., (1966) 897.
- 288 B.R. Davis and J.A. Ibers, Inorg. Chem., 9 (1970) 2768.
- 289 I.M. Treitel, M.T. Flood, R.E. Marsh and H.B. Gray, J. Amer. Chem. Soc., 91 (1969) 6512.

ERRATA

Ξ.

Organometallic Chemistry Reviews B, Vol. 9 (1972)

Page 61, structure (20) should read:

Page 62, structure (25) should read:

(25)